Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):686–691. doi: 10.1083/jcb.99.2.686

Inositol incorporation into phosphoinositides in retinal horizontal cells of Xenopus laevis: enhancement by acetylcholine, inhibition by glycine

PMCID: PMC2113292  PMID: 6086673

Abstract

The absorption of light by photoreceptor cells leads to an increased incorporation of [2-3H]inositol into phosphoinositides of horizontal cells in the retina of Xenopus laevis in vitro. We have identified several retinal neurotransmitters that are involved in regulating this response. Incubation with glycine, the neurotransmitter of an interplexiform cell that has direct synaptic input onto horizontal cells, abolishes the light effect. This inhibition is reversed by preincubation with strychnine. Acetylcholine added to the culture medium enhances the incorporation of [2-3H]inositol into phosphoinositides in horizontal cells when retinas are incubated in the dark. This effect is inhibited by preincubation with atropine. However, atropine alone does not inhibit the light-enhanced incorporation of [2- 3H]inositol into phosphoinositides in the retina. gamma-Aminobutyric acid, the neurotransmitter of retinal horizontal cells in X. laevis, as well as dopamine and norepinephrine, have no effect on the incorporation of [2-3H]inositol into phosphoinositides. These studies demonstrate that the light-enhanced incorporation of [2-3H]inositol into phosphoinositides of retinal horizontal cells is regulated by specific neurotransmitters, and that there are probably several synaptic inputs into horizontal cells which control this process.

Full Text

The Full Text of this article is available as a PDF (714.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agranoff B. W., Murthy P., Seguin E. B. Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem. 1983 Feb 25;258(4):2076–2078. [PubMed] [Google Scholar]
  2. Anderson R. E., Hollyfield J. G. Light stimulates the incorporation of inositol into phosphatidylinositol in the retina. Biochim Biophys Acta. 1981 Sep 24;665(3):619–622. doi: 10.1016/0005-2760(81)90280-0. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. E., Hollyfield J. G., Verner G. E. Regional effects of sodium aspartate and sodium glutamate on protein synthesis in the retina. Invest Ophthalmol Vis Sci. 1981 Oct;21(4):554–562. [PubMed] [Google Scholar]
  4. Anderson R. E., Maude M. B., Kelleher P. A., Rayborn M. E., Hollyfield J. G. Phosphoinositide metabolism in the retina: localization to horizontal cells and regulation by light and divalent cations. J Neurochem. 1983 Sep;41(3):764–771. doi: 10.1111/j.1471-4159.1983.tb04806.x. [DOI] [PubMed] [Google Scholar]
  5. Dowling J. E., Ehinger B. The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc R Soc Lond B Biol Sci. 1978 Apr 13;201(1142):7–26. doi: 10.1098/rspb.1978.0030. [DOI] [PubMed] [Google Scholar]
  6. Fisher S. K., Agranoff B. W. Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the ionophore A23187. J Neurochem. 1981 Oct;37(4):968–977. [PubMed] [Google Scholar]
  7. Fisher S. K., Boast C. A., Agranoff B. W. The muscarinic stimulation of phospholipid labeling in hippocampus is independent of its cholinergic input. Brain Res. 1980 May 5;189(1):284–288. doi: 10.1016/0006-8993(80)90030-x. [DOI] [PubMed] [Google Scholar]
  8. Gerschenfeld H. M., Piccolino M. Muscarinic antagonists block cone to horizontal cell transmission in turtle retina. Nature. 1977 Jul 21;268(5617):257–259. doi: 10.1038/268257a0. [DOI] [PubMed] [Google Scholar]
  9. Gould R. M., Dawson R. M. Incorporation of newly formed lecithin into peripheral nerve myelin. J Cell Biol. 1976 Mar;68(3):480–496. doi: 10.1083/jcb.68.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOKIN L. E., HOKIN M. R. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta. 1955 Sep;18(1):102–110. doi: 10.1016/0006-3002(55)90013-5. [DOI] [PubMed] [Google Scholar]
  11. Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hokin L. E. Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1369–1376. doi: 10.1073/pnas.53.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hollyfield J. G., Rayborn M. E., Sarthy P. V., Lam D. M. The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. Gamma aminobutyric acid. J Comp Neurol. 1979 Dec 15;188(4):587–598. doi: 10.1002/cne.901880406. [DOI] [PubMed] [Google Scholar]
  14. Lasater E. M., Watling K. J., Dowling J. E. Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells. Science. 1983 Sep 9;221(4615):1070–1072. doi: 10.1126/science.6308770. [DOI] [PubMed] [Google Scholar]
  15. Masland R. H., Mills J. W. Autoradiographic identification of acetylcholine in the rabbit retina. J Cell Biol. 1979 Oct;83(1):159–178. doi: 10.1083/jcb.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond B Biol Sci. 1973 Jul 3;183(1073):421–425. doi: 10.1098/rspb.1973.0026. [DOI] [PubMed] [Google Scholar]
  17. Murakami M., Otsu K., Otsuka T. Effects of chemicals on receptors and horizontal cells in the retina. J Physiol. 1972 Dec;227(3):899–913. doi: 10.1113/jphysiol.1972.sp010065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
  19. Putney J. W., Jr, Burgess G. M., Halenda S. P., McKinney J. S., Rubin R. P. Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas. Biochem J. 1983 May 15;212(2):483–488. doi: 10.1042/bj2120483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rayborn M. E., Sarthy P. V., Lam D. M., Hollyfield J. G. The emergence, localization, and maturation of neurotransmitter systems during development of the retina in Xenopus laevis: II. Glycine. J Comp Neurol. 1981 Feb 1;195(4):585–593. doi: 10.1002/cne.901950404. [DOI] [PubMed] [Google Scholar]
  21. Ripps H., Shakib M., MacDonald E. D. Peroxidase uptake by photoreceptor terminals of the skate retina. J Cell Biol. 1976 Jul;70(1):86–96. doi: 10.1083/jcb.70.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  23. Sarthy P. V., Rayborn M. E., Hollyfield J. G., Lam D. M. The emergence, localization, and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. III. Dopamine. J Comp Neurol. 1981 Feb 1;195(4):595–602. doi: 10.1002/cne.901950405. [DOI] [PubMed] [Google Scholar]
  24. Schacher S. M., Holtzman E., Hood D. C. Uptake of horseradish peroxidase by frog photoreceptor synapses in the dark and the light. Nature. 1974 May 17;249(454):261–263. doi: 10.1038/249261a0. [DOI] [PubMed] [Google Scholar]
  25. Schmidt S. Y. Light enhances the turnover of phosphatidylinositol in rat retinas. J Neurochem. 1983 Jun;40(6):1630–1638. doi: 10.1111/j.1471-4159.1983.tb08136.x. [DOI] [PubMed] [Google Scholar]
  26. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  27. Slaughter M. M., Miller R. F. An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science. 1983 Mar 11;219(4589):1230–1232. doi: 10.1126/science.6131536. [DOI] [PubMed] [Google Scholar]
  28. Smith T. L., Eichberg J., Hauser G. Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland. Life Sci. 1979 Jun 4;24(23):2179–2184. doi: 10.1016/0024-3205(79)90116-4. [DOI] [PubMed] [Google Scholar]
  29. Trifonov I. U. Izuchenie sinapticheskoi peredachi mezhdu fotoretseptorom i gorizontal'noi kletkoi pri pomoshchi élektricheskikh razdrazhenii setchatki. Biofizika. 1968 Sep-Oct;13(5):809–817. [PubMed] [Google Scholar]
  30. Van Buskirk R., Dowling J. E. Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7825–7829. doi: 10.1073/pnas.78.12.7825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Watling K. J., Dowling J. E. Effects of vasoactive intestinal peptide and other peptides on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost retina. J Neurochem. 1983 Nov;41(5):1205–1213. doi: 10.1111/j.1471-4159.1983.tb00813.x. [DOI] [PubMed] [Google Scholar]
  32. Watling K. J., Dowling J. E., Iversen L. L. Dopamine receptors in the retina may all be linked to adenylate cyclase. Nature. 1979 Oct 18;281(5732):578–580. doi: 10.1038/281578a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES