Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Oct 1;99(4):1251–1258. doi: 10.1083/jcb.99.4.1251

Cytoplasmic dynein-like ATPase cross-links microtubules in an ATP- sensitive manner

PMCID: PMC2113311  PMID: 6237113

Abstract

We have prepared dynein-like ATPase from the eggs of the sea urchin Strongylocentrotus purpuratus using differential centrifugation and column chromatography. This ATPase preparation is inhibited by vanadate and erythro-9-(3-[2-hydroxynonyl]) adenine (EHNA) at concentrations similar to those that inhibit reactivated flagellar beating and spindle elongation in lysed cell models. Using microtubule affinity and ATP- induced release, we can purify this ATPase activity to a composition on SDS PAGE of four peptides ranging in molecular weight from 180,000- 300,000. When viewed in darkfield optics, this affinity-purified ATPase caused extensive parallel bundling of microtubule-associated protein- free microtubules. These bundles were dispersed by 1 mM ATP but not by ATP gamma S or AMP-5'-adenylimidodiphosphate. The reformation of microtubule bundles after dispersal by ATP required ATP hydrolysis; bundles did not reform in the presence of 10 microM vanadate. Negative stain electron microscopy of these bundled microtubules revealed that they are arranged in parallel networks with extensive close lateral association.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  2. Bloodgood R. A., Miller K. R. Freeze-fracture of microtubules and bridges in motile axostyles. J Cell Biol. 1974 Sep;62(3):660–671. doi: 10.1083/jcb.62.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  5. Clark T. G., Rosenbaum J. L. Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4655–4659. doi: 10.1073/pnas.79.15.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forman D. S., Brown K. J., Livengood D. R. Fast axonal transport in permeabilized lobster giant axons is inhibited by vanadate. J Neurosci. 1983 Jun;3(6):1279–1288. doi: 10.1523/JNEUROSCI.03-06-01279.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forman D. S. Vanadate inhibits saltatory organelle movement in a permeabilized cell model. Exp Cell Res. 1982 Sep;141(1):139–147. doi: 10.1016/0014-4827(82)90076-3. [DOI] [PubMed] [Google Scholar]
  8. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibbons B. H., Gibbons I. R. Functional recombination of dynein 1 with demembranated sea urchin sperm partially extracted with KC1. Biochem Biophys Res Commun. 1976 Nov 8;73(1):1–6. doi: 10.1016/0006-291x(76)90488-5. [DOI] [PubMed] [Google Scholar]
  10. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gratecos D., Fischer E. H. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):960–967. doi: 10.1016/s0006-291x(74)80237-8. [DOI] [PubMed] [Google Scholar]
  13. Haimo L. T., Telzer B. R. Dynein-microtubule interactions: ATP-sensitive dynein binding and the structural polarity of mitotic microtubules. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):207–217. doi: 10.1101/sqb.1982.046.01.024. [DOI] [PubMed] [Google Scholar]
  14. Haimo L. T., Telzer B. R., Rosenbaum J. L. Dynein binds to and crossbridges cytoplasmic microtubules. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5759–5763. doi: 10.1073/pnas.76.11.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hepler P. K., McIntosh J. R., Cleland S. Intermicrotubule bridges in mitotic spindle apparatus. J Cell Biol. 1970 May;45(2):438–444. doi: 10.1083/jcb.45.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hisanaga S., Sakai H. Cytoplasmic dynein of the sea urchin egg. II. Purification, characterization and interactions with microtubules and Ca-calmodulin. J Biochem. 1983 Jan;93(1):87–98. doi: 10.1093/oxfordjournals.jbchem.a134182. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi T., Martensen T., Nath J., Flavin M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1313–1318. doi: 10.1016/0006-291x(78)91279-2. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Langford G. M. Length and appearance of projections on neuronal microtubules in vitro after negative staining: evidence against a crosslinking function for MAPs. J Ultrastruct Res. 1983 Oct;85(1):1–10. doi: 10.1016/s0022-5320(83)90111-9. [DOI] [PubMed] [Google Scholar]
  20. MAZIA D., CHAFFEE R. R., IVERSON R. M. Adenosine triphosphatase in the mitotic apparatus. Proc Natl Acad Sci U S A. 1961 Jun 15;47:788–790. doi: 10.1073/pnas.47.6.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McDonald K., Pickett-Heaps J. D., McIntosh J. R., Tippit D. H. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J Cell Biol. 1977 Aug;74(2):377–388. doi: 10.1083/jcb.74.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mitchell D. R., Warner F. D. Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate. J Cell Biol. 1980 Oct;87(1):84–97. doi: 10.1083/jcb.87.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murofushi H., Minami Y., Matsumoto G., Sakai H. Bundling of microtubules in vitro by a high molecular weight protein prepared from the squid axon. J Biochem. 1983 Feb;93(2):639–650. doi: 10.1093/oxfordjournals.jbchem.a134220. [DOI] [PubMed] [Google Scholar]
  25. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pallini V., Mencarelli C., Bracci L., Contorni M., Ruggiero P., Tiezzi A., Manetti R. Cytoplasmic nucleoside-triphosphatase similar to axonemal dynein occur widely in different cell types. J Submicrosc Cytol. 1983 Jan;15(1):229–235. [PubMed] [Google Scholar]
  27. Penningroth S. M., Cheung A., Bouchard P., Gagnon C., Bardin C. W. Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2-(hydroxynonyl)]adenine. Biochem Biophys Res Commun. 1982 Jan 15;104(1):234–240. doi: 10.1016/0006-291x(82)91964-7. [DOI] [PubMed] [Google Scholar]
  28. Penningroth S. M., Cheung A., Olehnik K., Koslosky R. Mechanochemical coupling in the relaxation of rigor-wave sea urchin sperm flagella. J Cell Biol. 1982 Mar;92(3):733–741. doi: 10.1083/jcb.92.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pratt M. M., Otter T., Salmon E. D. Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol. 1980 Sep;86(3):738–745. doi: 10.1083/jcb.86.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pratt M. M. The identification of a dynein ATPase in unfertilized sea urchin eggs. Dev Biol. 1980 Feb;74(2):364–378. doi: 10.1016/0012-1606(80)90438-8. [DOI] [PubMed] [Google Scholar]
  31. Sakai H. The isolated mitotic apparatus and chromosome motion. Int Rev Cytol. 1978;55:22–48. [PubMed] [Google Scholar]
  32. Sale W. S., Gibbons I. R. Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella. J Cell Biol. 1979 Jul;82(1):291–298. doi: 10.1083/jcb.82.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Satir P., Wais-Steider J., Lebduska S., Nasr A., Avolio J. The mechanochemical cycle of the dynein arm. Cell Motil. 1981;1(3):303–327. doi: 10.1002/cm.970010304. [DOI] [PubMed] [Google Scholar]
  34. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shimizu T., Johnson K. A. Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. J Biol Chem. 1983 Nov 25;258(22):13833–13840. [PubMed] [Google Scholar]
  36. Shimizu T. Steady-state kinetic study of vanadate-induced inhibition of ciliary dynein adenosinetriphosphatase activity from Tetrahymena. Biochemistry. 1981 Jul 21;20(15):4347–4354. doi: 10.1021/bi00518a018. [DOI] [PubMed] [Google Scholar]
  37. Summers K. E., Gibbons I. R. Effects of trypsin digestion on flagellar structures and their relationship to motility. J Cell Biol. 1973 Sep;58(3):618–629. doi: 10.1083/jcb.58.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takahashi M., Tonomura Y. Binding of 30s dynein with the B-tubule of the outer doublet of axonemes from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J Biochem. 1978 Dec;84(6):1339–1355. doi: 10.1093/oxfordjournals.jbchem.a132256. [DOI] [PubMed] [Google Scholar]
  39. Tucker J. B. Fine structure and function of the cytopharyngeal basket in the ciliate Nassula. J Cell Sci. 1968 Dec;3(4):493–514. doi: 10.1242/jcs.3.4.493. [DOI] [PubMed] [Google Scholar]
  40. Warner F. D., Mitchell D. R. Dynein: the mechanochemical coupling adenosine triphosphatase of microtubule-based sliding filament mechanisms. Int Rev Cytol. 1980;66:1–43. doi: 10.1016/s0074-7696(08)61970-1. [DOI] [PubMed] [Google Scholar]
  41. Warner F. D., Mitchell D. R. Polarity of dynein-microtubule interactions in vitro: cross-bridging between parallel and antiparallel microtubules. J Cell Biol. 1981 Apr;89(1):35–44. doi: 10.1083/jcb.89.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zanetti N. C., Mitchell D. R., Warner F. D. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J Cell Biol. 1979 Mar;80(3):573–588. doi: 10.1083/jcb.80.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES