Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Oct 1;99(4):1541–1544. doi: 10.1083/jcb.99.4.1541

Electrical currents flow out of domes formed by cultured epithelial cells

PMCID: PMC2113319  PMID: 6480702

Abstract

Domes are localized areas of fluid accumulation between a cultured epithelial cell monolayer and the impermeable substratum on which the cells are cultured in vitro. Dome formation has been documented in a variety of epithelial cell lines that retain their transepithelial transport properties in vitro. However, it is not known whether domes are predominantly areas of specific active transport, or, alternatively, are predominantly areas of relative weak attachment to the culture surface. In the present study we adapted a vibrating microelectrode, which can detect small currents flowing in extracellular fluid, to determine if current was flowing into or out of domes and thereby to determine if domes were specialized areas of active transport. We used alveolar type II cells as the main epithelial cell type because they readily form domes in vitro and because they transport sodium from the apical to the basal surface. We found that electrical current flowed out of domes. The direction of the current was independent of the size of a dome, of the age of an individual dome, and of the number of days in primary culture for alveolar epithelial cells. This current was inhibited by amiloride and ouabain and was dependent on sodium in the medium. We made similar observations (outward current from domes which is blocked by amiloride and by sodium substitution) with domes formed by the Madin-Darby canine kidney cell line. The data support the hypothesis that sodium is transported across the entire monolayer and leaks back mainly through the domes. We conclude that domes in epithelial monolayers are not predominantly special sites of active transport but are more likely simply areas of weak attachment to the substratum.

Full Text

The Full Text of this article is available as a PDF (473.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  2. Betz W. J., Caldwell J. H. Mapping electric currents around skeletal muscle with a vibrating probe. J Gen Physiol. 1984 Feb;83(2):143–156. doi: 10.1085/jgp.83.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burg M., Stoner L., Cardinal J., Green N. Furosemide effect on isolated perfused tubules. Am J Physiol. 1973 Jul;225(1):119–124. doi: 10.1152/ajplegacy.1973.225.1.119. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  5. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dobbs L. G., Geppert E. F., Williams M. C., Greenleaf R. D., Mason R. J. Metabolic properties and ultrastructure of alveolar type II cells isolated with elastase. Biochim Biophys Acta. 1980 Jun 23;618(3):510–523. doi: 10.1016/0005-2760(80)90270-2. [DOI] [PubMed] [Google Scholar]
  7. Goodman B. E., Fleischer R. S., Crandall E. D. Evidence for active Na+ transport by cultured monolayers of pulmonary alveolar epithelial cells. Am J Physiol. 1983 Jul;245(1):C78–C83. doi: 10.1152/ajpcell.1983.245.1.C78. [DOI] [PubMed] [Google Scholar]
  8. Gospodarowicz D., Ill C. Extracellular matrix and control of proliferation of vascular endothelial cells. J Clin Invest. 1980 Jun;65(6):1351–1364. doi: 10.1172/JCI109799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Handler J. S., Steele R. E., Sahib M. K., Wade J. B., Preston A. S., Lawson N. L., Johnson J. P. Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport, and response to hormones. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4151–4155. doi: 10.1073/pnas.76.8.4151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leighton J., Brada Z., Estes L. W., Justh G. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science. 1969 Jan 31;163(3866):472–473. doi: 10.1126/science.163.3866.472. [DOI] [PubMed] [Google Scholar]
  12. Lever J. E. Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK). Proc Natl Acad Sci U S A. 1979 Mar;76(3):1323–1327. doi: 10.1073/pnas.76.3.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lever J. E. Regulation of dome formation in kidney epithelial cell cultures. Ann N Y Acad Sci. 1981;372:371–383. doi: 10.1111/j.1749-6632.1981.tb15489.x. [DOI] [PubMed] [Google Scholar]
  14. Mason R. J., Williams M. C., Widdicombe J. H., Sanders M. J., Misfeldt D. S., Berry L. C., Jr Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6033–6037. doi: 10.1073/pnas.79.19.6033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagel W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta. 1979 Apr 4;552(2):346–357. doi: 10.1016/0005-2736(79)90289-x. [DOI] [PubMed] [Google Scholar]
  17. Rabito C. A., Tchao R., Valentich J., Leighton J. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J Membr Biol. 1978 Nov 8;43(4):351–365. doi: 10.1007/BF01871696. [DOI] [PubMed] [Google Scholar]
  18. Rabito C. A., Tchao R., Valentich J., Leighton J. Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro. 1980 Jun;16(6):461–468. doi: 10.1007/BF02626458. [DOI] [PubMed] [Google Scholar]
  19. Valentich J. D., Tchao R., Leighton J. Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK. J Cell Physiol. 1979 Aug;100(2):291–304. doi: 10.1002/jcp.1041000210. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES