Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Oct 1;99(4):1289–1295. doi: 10.1083/jcb.99.4.1289

Spatial organization of axonal microtubules

PMCID: PMC2113329  PMID: 6480693

Abstract

Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Bray G. M., Terry L. C., Sweezey E. Three dimensional analysis of unmyelinated fibers in normal and pathologic autonomic nerves. J Neuropathol Exp Neurol. 1976 Mar;35(2):136–151. doi: 10.1097/00005072-197603000-00002. [DOI] [PubMed] [Google Scholar]
  2. Banks P., Mayor D., Owen T. Effects of low temperatures on microtubules in the non-myelinated axons of post-ganglionic sympathetic nerves. Brain Res. 1975 Jan 10;83(2):277–292. doi: 10.1016/0006-8993(75)90936-1. [DOI] [PubMed] [Google Scholar]
  3. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  4. Bray D., Gilbert D. Cytoskeletal elements in neurons. Annu Rev Neurosci. 1981;4:505–523. doi: 10.1146/annurev.ne.04.030181.002445. [DOI] [PubMed] [Google Scholar]
  5. Bray D., Thomas C., Shaw G. Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5226–5229. doi: 10.1073/pnas.75.10.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brimijoin S., Olsen J., Rosenson R. Comparison of the temperature-dependence of rapid axonal transport and microtubules in nerves of the rabbit and bullfrog. J Physiol. 1979 Feb;287:303–314. doi: 10.1113/jphysiol.1979.sp012660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burton P. R., Paige J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci U S A. 1981 May;78(5):3269–3273. doi: 10.1073/pnas.78.5.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chalfie M., Thomson J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol. 1979 Jul;82(1):278–289. doi: 10.1083/jcb.82.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daniels M. The role of microtubules in the growth and stabilization of nerve fibers. Ann N Y Acad Sci. 1975 Jun 30;253:535–544. doi: 10.1111/j.1749-6632.1975.tb19227.x. [DOI] [PubMed] [Google Scholar]
  11. Echandia E. L., Piezzi R. S. Microtubules in the nerve fibers of the toad Bufo arenarum Hensel. Effect of low temperature on the sciatic nerve. J Cell Biol. 1968 Nov;39(2):491–497. doi: 10.1083/jcb.39.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
  15. GASSER H. S. Unmedullated fibers originating in dorsal root ganglia. J Gen Physiol. 1950 Jul 20;33(6):651–690. doi: 10.1085/jgp.33.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heidemann S. R., Euteneuer U. Microtubule polarity determination based on conditions for tubulin assembly in vitro. Methods Cell Biol. 1982;24:207–216. doi: 10.1016/s0091-679x(08)60656-1. [DOI] [PubMed] [Google Scholar]
  17. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  19. Job D., Rauch C. T., Fischer E. H., Margolis R. L. Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry. 1982 Feb 2;21(3):509–515. doi: 10.1021/bi00532a015. [DOI] [PubMed] [Google Scholar]
  20. Johnston R. N., Wessells N. K. Regulation of the elongating nerve fiber. Curr Top Dev Biol. 1980;16:165–206. doi: 10.1016/s0070-2153(08)60156-8. [DOI] [PubMed] [Google Scholar]
  21. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreutzberg G. W., Gross G. W. General morphology and axonal ultrastructure of the olfactory nerve of the pike, Esox lucius. Cell Tissue Res. 1977 Jul 19;181(4):443–457. doi: 10.1007/BF00221767. [DOI] [PubMed] [Google Scholar]
  23. Lasek R. J. Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):313–327. doi: 10.1098/rstb.1982.0135. [DOI] [PubMed] [Google Scholar]
  24. Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
  25. Lyser K. M. An electron-microscopic study of centrioles in differentiating motor neuroblasts. J Embryol Exp Morphol. 1968 Nov;20(3):343–354. [PubMed] [Google Scholar]
  26. Margolis R. L., Rauch C. T. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein. Biochemistry. 1981 Jul 21;20(15):4451–4458. doi: 10.1021/bi00518a033. [DOI] [PubMed] [Google Scholar]
  27. Mason A., Muller K. J. Axon segments sprout at both ends: tracking growth with fluorescent D-peptides. Nature. 1982 Apr 15;296(5858):655–657. doi: 10.1038/296655a0. [DOI] [PubMed] [Google Scholar]
  28. Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohnishi A., O'Brien P. C., Dyck P. J. Studies to improve fixation of human nerves. V. Effect of temperature, fixative and CaCl2 on density of microtubules and neurofilaments. J Neuropathol Exp Neurol. 1976 Mar;35(2):167–179. doi: 10.1097/00005072-197603000-00004. [DOI] [PubMed] [Google Scholar]
  30. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  31. Rome-Talbot D., Andre D., Chalazonitis N. Hypothermic decrease in microtubule density and birefringence in unimyelinated axons. J Neurobiol. 1978 Jul;9(4):247–254. doi: 10.1002/neu.480090402. [DOI] [PubMed] [Google Scholar]
  32. Salmon E. D. Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly. J Cell Biol. 1975 Jul;66(1):114–127. doi: 10.1083/jcb.66.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sharp G. A., Weber K., Osborn M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol. 1982 Nov;29(1):97–103. [PubMed] [Google Scholar]
  34. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  35. Shelanski M. L., Leterrier J. F., Liem R. K. Evidence for interactions between neurofilaments and microtubules. Neurosci Res Program Bull. 1981 Feb;19(1):32–43. [PubMed] [Google Scholar]
  36. Solomon F. Specification of cell morphology by endogenous determinants. J Cell Biol. 1981 Sep;90(3):547–553. doi: 10.1083/jcb.90.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spiegelman B. M., Lopata M. A., Kirschner M. W. Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 1979 Feb;16(2):253–263. doi: 10.1016/0092-8674(79)90003-5. [DOI] [PubMed] [Google Scholar]
  38. Tennyson V. M. Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol. 1965 Jun;124(3):267–317. doi: 10.1002/cne.901240302. [DOI] [PubMed] [Google Scholar]
  39. Weaver L. C., Gebber G. L. Electrophysiological analysis of neural events accompanying active dilatation. Am J Physiol. 1974 Jan;226(1):84–89. doi: 10.1152/ajplegacy.1974.226.1.84. [DOI] [PubMed] [Google Scholar]
  40. Webb B. C., Wilson L. Cold-stable microtubules from brain. Biochemistry. 1980 Apr 29;19(9):1993–2001. doi: 10.1021/bi00550a041. [DOI] [PubMed] [Google Scholar]
  41. Wuerker R. B., Kirkpatrick J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol. 1972;33:45–75. doi: 10.1016/s0074-7696(08)61448-5. [DOI] [PubMed] [Google Scholar]
  42. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES