Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Oct 1;99(4):1259–1265. doi: 10.1083/jcb.99.4.1259

Transport of epidermal growth factor by rat liver: evidence for a nonlysosomal pathway

PMCID: PMC2113332  PMID: 6090469

Abstract

Epidermal growth factor (EGF), circulating in the blood, is taken up by rat liver hepatocytes by means of specific and saturable receptor- mediated endocytosis. These experiments were undertaken to determine (a) the transport pathway(s) of EGF taken up by rat liver and (b) the effects of lysosomal inhibition on its transport. 125I-EGF was injected into rat portal veins, and bile samples were collected and analyzed for both total and immunoprecipitable radioactivity. In addition, the livers were examined by electron microscopic autoradiography. Some animals received injections of chloroquine before surgery, to disrupt lysosomal function. The results indicate that most of the EGF taken up by the hepatocytes is transported to lysosomes and degraded. However, a small but significant percentage of endocytosed EGF is transported by a pathway independent of the lysosomal system, resulting in secretion of intact EGF: (a) Both degraded and immunoprecipitable EGF are secreted into bile. (b) Immunoprecipitable radioactivity peaks at 20 min after EGF injection, whereas degradation-associated radioactivity does not peak until 40 min postinjection. (c) EGF isolated from bile is specifically taken up by isolated hepatocytes in monolayer culture, indicating that it is still recognizable by the EGF receptor. (d) When the lysosomal system is inhibited with chloroquine, secretion of degraded EGF is significantly inhibited, whereas the amount of intact EGF secreted into bile is unchanged. The utilization by liver of a dual transport process for EGF represents an unusual system of intracellular ligand processing, whose physiological significance has yet to be determined.

Full Text

The Full Text of this article is available as a PDF (919.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R., Hendy R., Grasso P. Formation of myeloid bodies in rat liver lysosomes after chloroquine administration. Exp Mol Pathol. 1968 Oct;9(2):212–229. doi: 10.1016/0014-4800(68)90037-3. [DOI] [PubMed] [Google Scholar]
  2. Bissell D. M., Guzelian P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98. doi: 10.1111/j.1749-6632.1980.tb29518.x. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  4. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chao Y. S., Jones A. L., Hradek G. T., Windler E. E., Havel R. J. Autoradiographic localization of the sites of uptake, cellular transport, and catabolism of low density lipoproteins in the liver of normal and estrogen-treated rats. Proc Natl Acad Sci U S A. 1981 Jan;78(1):597–601. doi: 10.1073/pnas.78.1.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen S., Carpenter G., Lembach K. J. Interaction of epidermal growth factor (EGF) with cultured fibroblasts. Adv Metab Disord. 1975;8:265–284. doi: 10.1016/b978-0-12-027308-9.50024-x. [DOI] [PubMed] [Google Scholar]
  8. Goldfine I. D., Jones A. L., Hradek G. T., Wong K. Y. Electron microscope autoradiographic analysis of [125I]iodoinsulin entry into adult rat hepatocytes in vivo: evidence for multiple sites of hormone localization. Endocrinology. 1981 May;108(5):1821–1828. doi: 10.1210/endo-108-5-1821. [DOI] [PubMed] [Google Scholar]
  9. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  10. Harder A., Pakalapati G., Debuch H. Influence of chloroquine treatment on enzymes and phospholipids from rat liver cell fractions. Biochem Biophys Res Commun. 1981 Mar 16;99(1):9–15. doi: 10.1016/0006-291x(81)91705-8. [DOI] [PubMed] [Google Scholar]
  11. Hubbard A. L., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. II. Intracellular fates of the 125I-ligands. J Cell Biol. 1979 Oct;83(1):65–81. doi: 10.1083/jcb.83.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones A. L., Renston R. H., Burwen S. J. Uptake and intracellular disposition of plasma-derived proteins and apoproteins by hepatocytes. Prog Liver Dis. 1982;7:51–69. [PubMed] [Google Scholar]
  13. King A. C., Hernaez-Davis L., Cuatrecasas P. Lysomotropic amines cause intracellular accumulation of receptors for epidermal growth factor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3283–3287. doi: 10.1073/pnas.77.6.3283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kovács A. L., Seglen P. O. Inhibition of hepatocytic protein degradation by inducers of autophagosome accumulation. Acta Biol Med Ger. 1982;41(1):125–130. [PubMed] [Google Scholar]
  15. Matsuzawa Y., Hostetler K. Y. Studies on drug-induced lipidosis: subcellular localization of phospholipid and cholesterol in the liver of rats treated with chloroquine or 4,4'-bis (diethylaminoethoxy)alpha, beta-diethyldiphenylethane. J Lipid Res. 1980 Feb;21(2):202–214. [PubMed] [Google Scholar]
  16. McKanna J. A., Haigler H. T., Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5689–5693. doi: 10.1073/pnas.76.11.5689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moriarity D. M., Savage C. R., Jr Interaction of epidermal growth factor with adult rat liver parenchymal cells in primary culture. Arch Biochem Biophys. 1980 Sep;203(2):506–518. doi: 10.1016/0003-9861(80)90208-8. [DOI] [PubMed] [Google Scholar]
  18. O'Keefe E., Hollenberg M. D., Cuatrecasas P. Epidermal growth factor. Characteristics of specific binding in membranes from liver, placenta, and other target tissues. Arch Biochem Biophys. 1974 Oct;164(2):518–526. doi: 10.1016/0003-9861(74)90062-9. [DOI] [PubMed] [Google Scholar]
  19. Posner B. I., Patel B. A., Khan M. N., Bergeron J. J. Effect of chloroquine on the internalization of 125I-insulin into subcellular fractions of rat liver. Evidence for an effect of chloroquine on Golgi elements. J Biol Chem. 1982 May 25;257(10):5789–5799. [PubMed] [Google Scholar]
  20. Renston R. H., Jones A. L., Christiansen W. D., Hradek G. T., Underdown B. J. Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science. 1980 Jun 13;208(4449):1276–1278. doi: 10.1126/science.7375938. [DOI] [PubMed] [Google Scholar]
  21. Renston R. H., Maloney D. G., Jones A. L., Hradek G. T., Wong K. Y., Goldfine I. D. Bile secretory apparatus: evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and [125I]insulin. Gastroenterology. 1980 Jun;78(6):1373–1388. [PubMed] [Google Scholar]
  22. Robinson J. M., Karnovsky M. J. Ultrastructural localization of several phosphatases with cerium. J Histochem Cytochem. 1983 Oct;31(10):1197–1208. doi: 10.1177/31.10.6309949. [DOI] [PubMed] [Google Scholar]
  23. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  24. Savion N., Vlodavsky I., Gospodarowicz D. Nuclear accumulation of epidermal growth factor in cultured bovine corneal endothelial and granulosa cells. J Biol Chem. 1981 Feb 10;256(3):1149–1154. [PubMed] [Google Scholar]
  25. Schiff J. M., Fisher M. M., Underdown B. J. Receptor-mediated biliary transport of immunoglobulin A and asialoglycoprotein: sorting and missorting of ligands revealed by two radiolabeling methods. J Cell Biol. 1984 Jan;98(1):79–89. doi: 10.1083/jcb.98.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. St Hilaire R. J., Hradek G. T., Jones A. L. Hepatic sequestration and biliary secretion of epidermal growth factor: evidence for a high-capacity uptake system. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3797–3801. doi: 10.1073/pnas.80.12.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. St Hilaire R. J., Jones A. L. Epidermal growth factor: its biologic and metabolic effects with emphasis on the hepatocyte. Hepatology. 1982 Sep-Oct;2(5):601–613. doi: 10.1002/hep.1840020515. [DOI] [PubMed] [Google Scholar]
  28. Thomas P., Summers J. W. The biliary excretion of circulating asialoglycoproteins in the rat. Biochem Biophys Res Commun. 1978 Jan 30;80(2):335–339. doi: 10.1016/0006-291x(78)90681-2. [DOI] [PubMed] [Google Scholar]
  29. Vlodavsky I., Brown K. D., Gospodarowicz D. A comparison of the binding of epidermal growth factor to cultured granulosa and luteal cells. J Biol Chem. 1978 May 25;253(10):3744–3750. [PubMed] [Google Scholar]
  30. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wibo M., Poole B. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol. 1974 Nov;63(2 Pt 1):430–440. doi: 10.1083/jcb.63.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES