Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Nov 1;99(5):1624–1633. doi: 10.1083/jcb.99.5.1624

Lateral diffusion of an 80,000-dalton glycoprotein in the plasma membrane of murine fibroblasts: relationships to cell structure and function

PMCID: PMC2113337  PMID: 6386824

Abstract

The lateral diffusion of an 80,000-dalton major cell surface glycoprotein of murine fibroblasts has been measured. This antigen, identified through the use of monoclonal antibodies, is an integral glycoprotein distributed through the plasma membrane as judged by immunofluorescence and immunoelectron microscopy (see preceding paper). Measurements of fluorescence recovery after photobleaching were performed on the antigen-antibody complex within the plasma membrane of C3H/10T1/2 and NIH/3T3 cells after labeling the monoclonal antibody with fluorescein. Measurements were performed as a function of temperature, for interphase, mitotic, and G0 C3H/10T1/2 cells. The mean lateral diffusion coefficients (D) for the antibody-protein complex in interphase cells were in the range of 0.7-3.5 X 10(-10) cm2/s between 9 degrees and 37 degrees C, while that for the lipid analog probe, dihexadecylindocarbocyanine was about two orders of magnitude greater. This comparison indicates that peripheral interactions other than bilayer fluidity limit the lateral mobility of the antigen. The mobile fraction of mitotic, G0, and interphase cells showed a monotonic increase with temperature with most of the antibody-antigen complexes being free to move about 25 degrees C. Semi-quantitative interpretations of both the slow glycoprotein diffusion and the immobile fraction are offered. Comparison of diffusion coefficients for cells in different phases of the cell cycle does not reveal striking differences. Mobile fractions for G0 cells at 25 degrees C or less are substantially lower than in interphase cells. In all cases, there was a remarkably broad range of the fluorescence recovery data between different cells, resulting in up to a 10-fold variation in diffusion coefficients, which is far greater than the precision limits of the experiment. Diffusion values and mobile fractions were generally well within a factor of two when measured at several arbitrary points on a single cell. The origins of this cellular heterogenity remain to be elucidated. Lateral mobility in cell fragments and specific regions of single cells was also examined. The glycoprotein was mobile in ventral surface cell fragments. Its mobility was not altered in regions of cell- cell underlapping. However, the diffusion coefficient was threefold higher near the leading edge of motile cells compared to the trailing region. This difference may reflect weaker coupling of the glycoprotein to the underlying cytoskeleton in the dynamic leading edge region.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizenbud B. M., Gershon N. D. Diffusion of molecules on biological membranes of nonplanar form. A theoretical study. Biophys J. 1982 Jun;38(3):287–293. doi: 10.1016/S0006-3495(82)84560-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axelrod D., Wight A., Webb W., Horwitz A. Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. Biochemistry. 1978 Aug 22;17(17):3604–3609. doi: 10.1021/bi00610a029. [DOI] [PubMed] [Google Scholar]
  5. Bornstein P., Ash J. F. Cell surface-associated structural proteins in connective tissue cells. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2480–2484. doi: 10.1073/pnas.74.6.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  7. Chow I., Poo M. M. Redistribution of cell surface receptors induced by cell-cell contact. J Cell Biol. 1982 Nov;95(2 Pt 1):510–518. doi: 10.1083/jcb.95.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Derzko Z., Jacobson K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry. 1980 Dec 23;19(26):6050–6057. doi: 10.1021/bi00567a016. [DOI] [PubMed] [Google Scholar]
  9. Deugnier M. A., Albe X., Caron M., Bisconte J. C. Lateral diffusion of membrane D-galactosyl glycoconjugates of differentiating neuroblastoma cells. Biochem Biophys Res Commun. 1981 Nov 30;103(2):490–497. doi: 10.1016/0006-291x(81)90479-4. [DOI] [PubMed] [Google Scholar]
  10. Dragsten P., Henkart P., Blumenthal R., Weinstein J., Schlessinger J. Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5163–5167. doi: 10.1073/pnas.76.10.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  12. Edidin M., Wei T. Lateral diffusion of H-2 antigens on mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):458–462. doi: 10.1083/jcb.95.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edidin M., Zagyansky Y., Lardner T. J. Measurement of membrane protein lateral diffusion in single cells. Science. 1976 Feb 6;191(4226):466–468. doi: 10.1126/science.1246629. [DOI] [PubMed] [Google Scholar]
  14. Eldridge C. A., Elson E. L., Webb W. W. Fluorescence photobleaching recovery measurements of surface lateral mobilities on normal and SV40-transformed mouse fibroblasts. Biochemistry. 1980 May 13;19(10):2075–2079. doi: 10.1021/bi00551a011. [DOI] [PubMed] [Google Scholar]
  15. Elson E. L., Reidler J. A. Analysis of cell surface interactions by measurements of lateral mobility. J Supramol Struct. 1979;12(4):481–489. doi: 10.1002/jss.400120408. [DOI] [PubMed] [Google Scholar]
  16. Gall W. E., Edelman G. M. Lateral diffusion of surface molecules in animal cells and tissues. Science. 1981 Aug 21;213(4510):903–905. doi: 10.1126/science.7196087. [DOI] [PubMed] [Google Scholar]
  17. Geiger B., Avnur Z., Schlessinger J. Restricted mobility of membrane constituents in cell-substrate focal contacts of chicken fibroblasts. J Cell Biol. 1982 May;93(2):495–500. doi: 10.1083/jcb.93.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hedman K., Johansson S., Vartio T., Kjellén L., Vaheri A., Hök M. Structure of the pericellular matrix: association of heparan and chondroitin sulfates with fibronectin-procollagen fibers. Cell. 1982 Mar;28(3):663–671. doi: 10.1016/0092-8674(82)90221-5. [DOI] [PubMed] [Google Scholar]
  20. Hillman G. M., Schlessinger J. Lateral diffusion of epidermal growth factor complexed to its surface receptors does not account for the thermal sensitivity of patch formation and endocytosis. Biochemistry. 1982 Mar 30;21(7):1667–1672. doi: 10.1021/bi00536a030. [DOI] [PubMed] [Google Scholar]
  21. Hughes E. N., August J. T. Characterization of plasma membrane proteins identified by monoclonal antibodies. J Biol Chem. 1981 Jan 25;256(2):664–671. [PubMed] [Google Scholar]
  22. Hughes E. N., Colombatti A., August J. T. Murine cell surface glycoproteins. Purification of the polymorphic Pgp-1 antigen and analysis of its expression on macrophages and other myeloid cells. J Biol Chem. 1983 Jan 25;258(2):1014–1021. [PubMed] [Google Scholar]
  23. Hughes E. N., Mengod G., August J. T. Murine cell surface glycoproteins. Characterization of a major component of 80,000 daltons as a polymorphic differentiation antigen of mesenchymal cells. J Biol Chem. 1981 Jul 10;256(13):7023–7027. [PubMed] [Google Scholar]
  24. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers. 1983 Aug;22(8):1919–1948. doi: 10.1002/bip.360220808. [DOI] [PubMed] [Google Scholar]
  25. Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
  26. Jacobson K., Elson E., Koppel D., Webb W. International workshop on the application of fluorescence photobleaching techniques to problems in cell biology. Fed Proc. 1983 Jan;42(1):72–79. [PubMed] [Google Scholar]
  27. Jacobson K., Hou Y., Derzko Z., Wojcieszyn J., Organisciak D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry. 1981 Sep 1;20(18):5268–5275. doi: 10.1021/bi00521a027. [DOI] [PubMed] [Google Scholar]
  28. Jacobson K., Hou Y., Wojcieszyn J. Evidence for lack of damage during photobleaching measurements of the lateral mobility of cell surface components. Exp Cell Res. 1978 Oct 1;116(1):179–189. doi: 10.1016/0014-4827(78)90074-5. [DOI] [PubMed] [Google Scholar]
  29. Jacobson K., Hou Y., Wojcieszyn J. Evidence for lack of damage during photobleaching measurements of the lateral mobility of cell surface components. Exp Cell Res. 1978 Oct 1;116(1):179–189. doi: 10.1016/0014-4827(78)90074-5. [DOI] [PubMed] [Google Scholar]
  30. Jacobson K. Lateral diffusion in membranes. Cell Motil. 1983;3(5-6):367–373. doi: 10.1002/cm.970030504. [DOI] [PubMed] [Google Scholar]
  31. Kleinfeld A. M., Dragsten P., Klausner R. D., Pjura W. J., Matayoshi E. D. The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes. Biochim Biophys Acta. 1981 Dec 7;649(2):471–480. doi: 10.1016/0005-2736(81)90438-7. [DOI] [PubMed] [Google Scholar]
  32. Koppel D. E. Association dynamics and lateral transport in biological membranes. J Supramol Struct Cell Biochem. 1981;17(1):61–67. doi: 10.1002/jsscb.380170107. [DOI] [PubMed] [Google Scholar]
  33. Koppel D. E., Sheetz M. P. Fluorescence photobleaching does not alter the lateral mobility of erythrocyte membrane glycoproteins. Nature. 1981 Sep 10;293(5828):159–161. doi: 10.1038/293159a0. [DOI] [PubMed] [Google Scholar]
  34. Koppel D. E., Sheetz M. P., Schindler M. Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576–3580. doi: 10.1073/pnas.78.6.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mason D. W., Williams A. F. The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem J. 1980 Apr 1;187(1):1–20. doi: 10.1042/bj1870001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Middleton C. A. Cell-surface labelling reveals no evidence for membrane assembly and disassembly during fibroblast locomotion. Nature. 1979 Nov 8;282(5735):203–205. doi: 10.1038/282203a0. [DOI] [PubMed] [Google Scholar]
  37. Murphy T. L., Decker G., August J. T. Glycoproteins of coated pits, cell junctions, and the entire cell surface revealed by monoclonal antibodies and immunoelectron microscopy. J Cell Biol. 1983 Aug;97(2):533–541. doi: 10.1083/jcb.97.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Petty H. R., Smith L. M., Fearon D. T., McConnell H. M. Lateral distribution and diffusion of the C3b receptor of complement, HLA antigens, and lipid probes in peripheral blood leukocytes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6587–6591. doi: 10.1073/pnas.77.11.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saxholm H. J., Reith A. The surface structure of 7,12-dimethylbenz(a)anthracene transformed C3H/10T 1/2 cells. A quantitative scanning electron microscopical study. Eur J Cancer. 1979 Jun;15(6):843–855. doi: 10.1016/0014-2964(79)90225-1. [DOI] [PubMed] [Google Scholar]
  40. Schlessinger J., Axelrod D., Koppel D. E., Webb W. W., Elson E. L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science. 1977 Jan 21;195(4275):307–309. doi: 10.1126/science.556653. [DOI] [PubMed] [Google Scholar]
  41. Schlessinger J., Barak L. S., Hammes G. G., Yamada K. M., Pastan I., Webb W. W., Elson E. L. Mobility and distribution of a cell surface glycoprotein and its interaction with other membrane components. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2909–2913. doi: 10.1073/pnas.74.7.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schlessinger J., Webb W. W., Elson E. L., Metzger H. Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature. 1976 Dec 9;264(5586):550–552. doi: 10.1038/264550a0. [DOI] [PubMed] [Google Scholar]
  43. Szoka F., Magnusson K. E., Wojcieszyn J., Hou Y., Derzko Z., Jacobson K. Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1685–1689. doi: 10.1073/pnas.78.3.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tank D. W., Wu E. S., Webb W. W. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol. 1982 Jan;92(1):207–212. doi: 10.1083/jcb.92.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Woda B. A., Yguerabide J., Feldman J. D. The effect of local anesthetics on the lateral mobility of lymphocyte membrane proteins. Exp Cell Res. 1980 Apr;126(2):327–331. doi: 10.1016/0014-4827(80)90271-2. [DOI] [PubMed] [Google Scholar]
  46. Wojcieszyn J. W., Schlegel R. A., Lumley-Sapanski K., Jacobson K. A. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983 Jan;96(1):151–159. doi: 10.1083/jcb.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wolf D. E., Edidin M., Dragsten P. R. Effect of bleaching light on measurements of lateral diffusion in cell membranes by the fluorescence photobleaching recovery method. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2043–2045. doi: 10.1073/pnas.77.4.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wolf D. E., Handyside A. H., Edidin M. Effect of microvilli on lateral diffusion measurements made by the fluorescence photobleaching recovery technique. Biophys J. 1982 Jun;38(3):295–297. doi: 10.1016/S0006-3495(82)84561-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu E. S., Tank D. W., Webb W. W. Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4962–4966. doi: 10.1073/pnas.79.16.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Laat S. W., van der Saag P. T., Elson E. L., Schlessinger J. Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1526–1528. doi: 10.1073/pnas.77.3.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES