Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Nov 1;99(5):1569–1574. doi: 10.1083/jcb.99.5.1569

Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis

PMCID: PMC2113362  PMID: 6208198

Abstract

24-h intravenous caerulein infusion studies in the rat were combined with in vitro amino acid incorporation studies followed by high- resolution separation of proteins by two-dimensional isoelectric focusing and SDS gel electrophoresis to study the extent to which persistent changes in the biosynthesis of exocrine pancreatic proteins are regulated by cholecystokinin-like peptides. Beginning in the third hour of optimal hormone infusion at 0.25 microgram kg-1 h-1, changes were observed in the synthetic rates of 12 proteins, which progressed over the course of the 24-h study. Based on coordinate response patterns, exocrine proteins could be classified into four distinct groups. Group I (trypsinogen forms 1 and 2) showed progressive increases in synthetic rates reaching a combined 4.3-fold increase over control levels. Group II (amylase forms 1 and 2) showed progressive decreases in synthesis to levels 7.1- and 14.3-fold lower than control levels, respectively. Group III proteins (ribonuclease, chymotrypsinogen forms 1 and 2, procarboxypeptidase forms A and B, and proelastase 1) showed moderate increases in synthesis, 1.4-2.8-fold, and group IV proteins (trypsinogen 3, lipase, proelastase 2, and unidentified proteins 1-4) did not show changes in synthesis with hormone stimulation. Regulation of protein synthesis in response to caerulein infusion was specific for individual isoenzymic forms in the case of both trypsinogen and proelastase. The ratio of biosynthetic rates of trypsinogen forms 1 + 2 to amylase forms 1 + 2 increased from a control value of 0.56 to 24.4 after 24 h of hormonal stimulation (43.5-fold increase). Biosynthetic rates for an unidentified protein (P23) with an Mr = 23,000 and isoelectric point of 6.2 increased 14.2- fold, and the ratio of synthesis of P23 to amylase 2 increased 200-fold during caerulein infusion. During hormone stimulation the anticoordinate response in the synthesis of pancreatic glycosidases (decreased synthesis) and serine protease zymogens (increased synthesis) explain previous observations that showed little change in rates of total protein synthesis under similar conditions.

Full Text

The Full Text of this article is available as a PDF (662.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler G., Bieger W., Kern H. F. Amino acid transport in the rat exocrine pancreas. III. Effect of maximal and supramaximal hormonal stimulation in vivo. Cell Tissue Res. 1978 Dec 12;194(3):447–462. doi: 10.1007/BF00236165. [DOI] [PubMed] [Google Scholar]
  2. Adler G., Rohr G., Kern H. F. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig Dis Sci. 1982 Nov;27(11):993–1002. doi: 10.1007/BF01391745. [DOI] [PubMed] [Google Scholar]
  3. Bieger W., Martin-Achard A., Bassler M., Kern H. F. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. IV. Stimulation by in vivo infusion of caerulein. Cell Tissue Res. 1976 Jan 28;165(4):435–453. doi: 10.1007/BF00224474. [DOI] [PubMed] [Google Scholar]
  4. Bieger W., Seybold J., Kern H. F. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. V. Kinetic studies on accelerated transport following caerulein infusion in vivo. Cell Tissue Res. 1976 Jul 26;170(2):203–219. doi: 10.1007/BF00224299. [DOI] [PubMed] [Google Scholar]
  5. Dagorn J. C., Mongeau R. Different action of hormonal stimulation on the biosynthesis of three pancreatic enzymes. Biochim Biophys Acta. 1977 Jun 23;498(1):76–82. doi: 10.1016/0304-4165(77)90088-5. [DOI] [PubMed] [Google Scholar]
  6. Dembinski A. B., Johnson L. R. Stimulation of pancreatic growth by secretin, caerulein, and pentagastrin. Endocrinology. 1980 Jan;106(1):323–328. doi: 10.1210/endo-106-1-323. [DOI] [PubMed] [Google Scholar]
  7. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  8. Hansen L. J., Reddy M. K., Reddy J. K. Comparison of secretory protein and membrane composition of secretory granules isolated from normal and neoplastic pancreatic acinar cells of rats. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4379–4383. doi: 10.1073/pnas.80.14.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kramer M. F., Poort C. Protein synthesis in the pancreas of the rat after stimulation of secretion. Z Zellforsch Mikrosk Anat. 1968;86(4):475–486. doi: 10.1007/BF00324859. [DOI] [PubMed] [Google Scholar]
  11. Meldolesi J. Effect of caerulein on protein synthesis and secretion in the guinea-pig pancreas. Br J Pharmacol. 1970 Dec;40(4):721–731. doi: 10.1111/j.1476-5381.1970.tb10649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pappritz G., Bräuer U. Zur Technik der Schwanzvenen-Dauerinfusion an der nicht immobilisierten Ratte. Arzneimittelforschung. 1977;27(4):864–865. [PubMed] [Google Scholar]
  13. Reggio H., Cailla-Deckmyn H., Marchis-Mouren G. Effect of pancreozymin on rat pancreatic enzyme biosynthesis. J Cell Biol. 1971 Aug;50(2):333–343. doi: 10.1083/jcb.50.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Richards G. M. Modifications of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal Biochem. 1974 Feb;57(2):369–376. doi: 10.1016/0003-2697(74)90091-8. [DOI] [PubMed] [Google Scholar]
  15. Robberecht P., Deschodt-Lanckman M., Camus J., Kutzner R., Christophe J. Amino acid levels in rat pancreas after pilocarpine or pancreozymin. Am J Physiol. 1973 Jun;224(6):1309–1313. doi: 10.1152/ajplegacy.1973.224.6.1309. [DOI] [PubMed] [Google Scholar]
  16. Scheele G. A. Analysis of the secretory process in the exocrine pancreas by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Methods Cell Biol. 1981;23:345–358. doi: 10.1016/s0091-679x(08)61508-3. [DOI] [PubMed] [Google Scholar]
  17. Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
  18. Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
  19. Scheele G., Haymovits A. Cholinergic and peptide-stimulated discharge of secretory protein in guinea pig pancreatic lobules. Role of intracellular and extracellular calcium. J Biol Chem. 1979 Oct 25;254(20):10346–10353. [PubMed] [Google Scholar]
  20. Singh M., Webster P. D., 3rd Effect of hormones on pancreatic macromolecular transport. Gastroenterology. 1975 Jun;68(6):1536–1542. [PubMed] [Google Scholar]
  21. Solomon T. E., Vanier M., Morisset J. Cell site and time course of DNA synthesis in pancreas after caerulein and secretin. Am J Physiol. 1983 Jul;245(1):G99–105. doi: 10.1152/ajpgi.1983.245.1.G99. [DOI] [PubMed] [Google Scholar]
  22. Wicker C., Puigserver A., Scheele G. Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas. Eur J Biochem. 1984 Mar 1;139(2):381–387. doi: 10.1111/j.1432-1033.1984.tb08017.x. [DOI] [PubMed] [Google Scholar]
  23. Williams J. A., Bailey A. C., Preissler M., Goldfine I. D. Insulin regulation of sugar transport in isolated pancreatic acini from diabetic mice. Diabetes. 1982 Aug;31(8 Pt 1):674–682. doi: 10.2337/diab.31.8.674. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES