Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Nov 1;99(5):1785–1793. doi: 10.1083/jcb.99.5.1785

Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule

PMCID: PMC2113366  PMID: 6333427

Abstract

Video-enhanced contrast/differential interference-contrast microscopy was used in conjunction with whole mount electron microscopy to study particle transport along linear elements in fibroblasts. Keratocytes from the corneal stroma of Rana pipiens were grown on gold indicator grids and examined with video microscopy. Video records were taken of the linear elements and associated particle transport until lysis and/or fixation of the cells was completed. The preparations were then processed for whole mount electron microscopy. By combining these two methods, we demonstrated that linear elements detected in the living cell could be identified as single microtubules, and that filaments as small as 10 nm could be detected in lysed and fixed cells. The visibility of different cytoplasmic structures changed after lysis with many more cellular components becoming visible. Microtubules became more difficult to detect after lysis while bundles of microfilaments became more prominent. All particle translocations were observed to take place along linear elements composed of one or more microtubules. Furthermore, particles were observed to translocate in one or both directions on the same microtubule.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Allen N. S., Travis J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1981;1(3):291–302. doi: 10.1002/cm.970010303. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Allen N. S. Video-enhanced microscopy with a computer frame memory. J Microsc. 1983 Jan;129(Pt 1):3–17. doi: 10.1111/j.1365-2818.1983.tb04157.x. [DOI] [PubMed] [Google Scholar]
  3. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  4. Breuer A. C., Christian C. N., Henkart M., Nelson P. G. Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J Cell Biol. 1975 Jun;65(3):562–576. doi: 10.1083/jcb.65.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buckley I., Stewart M. Ciliary but not saltatory movements are inhibited by vanadate microinjected into living cultured cells. Cell Motil. 1983;3(2):167–184. doi: 10.1002/cm.970030206. [DOI] [PubMed] [Google Scholar]
  6. Burton P. R., Paige J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci U S A. 1981 May;78(5):3269–3273. doi: 10.1073/pnas.78.5.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark T. G., Rosenbaum J. L. Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4655–4659. doi: 10.1073/pnas.79.15.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Couchman J. R., Rees D. A. Organelle-cytoskeleton relationships in fibroblasts: mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth. Eur J Cell Biol. 1982 Apr;27(1):47–54. [PubMed] [Google Scholar]
  9. Euteneuer U., McIntosh J. R. Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A. 1981 Jan;78(1):372–376. doi: 10.1073/pnas.78.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forman D. S. Vanadate inhibits saltatory organelle movement in a permeabilized cell model. Exp Cell Res. 1982 Sep;141(1):139–147. doi: 10.1016/0014-4827(82)90076-3. [DOI] [PubMed] [Google Scholar]
  11. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
  13. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  14. Haimo L. T., Telzer B. R., Rosenbaum J. L. Dynein binds to and crossbridges cytoplasmic microtubules. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5759–5763. doi: 10.1073/pnas.76.11.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hammond G. R., Smith R. S. Inhibition of the rapid movement of optically detectable axonal particles colchicine and vinblastine. Brain Res. 1977 Jun 10;128(2):227–242. doi: 10.1016/0006-8993(77)90990-8. [DOI] [PubMed] [Google Scholar]
  16. Hayden J. H., Allen R. D., Goldman R. D. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil. 1983;3(1):1–19. doi: 10.1002/cm.970030102. [DOI] [PubMed] [Google Scholar]
  17. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  19. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Raine C. S., Ghetti B., Shelanski M. L. On the association between microtubules and mitochondria within axons. Brain Res. 1971 Nov;34(2):389–393. doi: 10.1016/0006-8993(71)90293-9. [DOI] [PubMed] [Google Scholar]
  21. Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
  22. Schliwa M., van Blerkom J., Porter K. R. Stabilization and the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4329–4333. doi: 10.1073/pnas.78.7.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  24. Smith D. S., Järlfors U., Cayer M. L. Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana). J Cell Sci. 1977;27:255–272. doi: 10.1242/jcs.27.1.255. [DOI] [PubMed] [Google Scholar]
  25. Telzer B. R., Haimo L. T. Decoration of spindle microtubules with Dynein: evidence for uniform polarity. J Cell Biol. 1981 May;89(2):373–378. doi: 10.1083/jcb.89.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Travis J. L., Allen R. D. Studies on the motility of the foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris (Arnold). J Cell Biol. 1981 Jul;90(1):211–221. doi: 10.1083/jcb.90.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Travis J. L., Kenealy J. F., Allen R. D. Studies on the motility of the foraminifera. II. The dynamic microtubular cytoskeleton of the reticulopodial network of Allogromia laticollaris. J Cell Biol. 1983 Dec;97(6):1668–1676. doi: 10.1083/jcb.97.6.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang E., Goldman R. D. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J Cell Biol. 1978 Dec;79(3):708–726. doi: 10.1083/jcb.79.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warner F. D., Mitchell D. R. Polarity of dynein-microtubule interactions in vitro: cross-bridging between parallel and antiparallel microtubules. J Cell Biol. 1981 Apr;89(1):35–44. doi: 10.1083/jcb.89.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES