Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):1083–1091. doi: 10.1083/jcb.99.3.1083

Distinct cytoskeletal domains revealed in sperm cells

PMCID: PMC2113388  PMID: 6381503

Abstract

Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance of these surface assemblies and, hence, affect the spermatozoan function.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badley R. A., Lloyd C. W., Woods A., Carruthers L., Allcock C., Rees D. A. Mechanisms of cellular adhesion. III. Preparation and preliminary characterisation of adhesions. Exp Cell Res. 1978 Dec;117(2):231–244. doi: 10.1016/0014-4827(78)90136-2. [DOI] [PubMed] [Google Scholar]
  2. Badley R. A., Woods A., Carruthers L., Rees D. A. Cytoskeleton changes in fibroblast adhesion and detachment. J Cell Sci. 1980 Jun;43:379–390. doi: 10.1242/jcs.43.1.379. [DOI] [PubMed] [Google Scholar]
  3. Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barros C., Franklin L. E. Behavior of the gamete membranes during sperm entry into the mammalian egg. J Cell Biol. 1968 Jun;37(3):C13–C18. doi: 10.1083/jcb.37.3.c13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bearer E. L., Friend D. S. Anionic lipid domains: correlation with functional topography in a mammalian cell membrane. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6601–6605. doi: 10.1073/pnas.77.11.6601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  8. Bennett V., Davis J., Fowler W. E. Immunoreactive forms of erythrocyte spectrin and ankyrin in brain. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):301–312. doi: 10.1098/rstb.1982.0134. [DOI] [PubMed] [Google Scholar]
  9. Browning E. T., Sanders M. M. Vimentin: a phosphoprotein under hormonal regulation. J Cell Biol. 1981 Sep;90(3):803–808. doi: 10.1083/jcb.90.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carlin R. K., Bartelt D. C., Siekevitz P. Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Cell Biol. 1983 Feb;96(2):443–448. doi: 10.1083/jcb.96.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clarke G. N., Clarke F. M., Wilson S. Actin in human spermatozoa. Biol Reprod. 1982 Mar;26(2):319–327. doi: 10.1095/biolreprod26.2.319. [DOI] [PubMed] [Google Scholar]
  13. Clarke G. N., Yanagimachi R. Actin in mammalian sperm heads. J Exp Zool. 1978 Jul;205(1):125–132. doi: 10.1002/jez.1402050115. [DOI] [PubMed] [Google Scholar]
  14. Fawcett D. W. The mammalian spermatozoon. Dev Biol. 1975 Jun;44(2):394–436. doi: 10.1016/0012-1606(75)90411-x. [DOI] [PubMed] [Google Scholar]
  15. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  16. Flaherty S. P., Breed W. G., Sarafis V. Localization of actin in the sperm head of the plains mouse, Pseudomys australis. J Exp Zool. 1983 Mar;225(3):497–500. doi: 10.1002/jez.1402250318. [DOI] [PubMed] [Google Scholar]
  17. Forer A. Actin localization within cells by electron microscopy. Methods Cell Biol. 1982;25(Pt B):131–142. [PubMed] [Google Scholar]
  18. Franke W. W., Grund C., Schmid E. Intermediate-sized filaments present in Sertoli cells are of the vimentin type. Eur J Cell Biol. 1979 Aug;19(3):269–275. [PubMed] [Google Scholar]
  19. Friend D. S. Plasma-membrane diversity in a highly polarized cell. J Cell Biol. 1982 May;93(2):243–249. doi: 10.1083/jcb.93.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gard D. L., Lazarides E. Analysis of desmin and vimentin phosphopeptides in cultured avian myogenic cells and their modulation by 8-bromo-adenosine 3',5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6912–6916. doi: 10.1073/pnas.79.22.6912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gaunt S. J., Brown C. R., Jones R. Identification of mobile and fixed antigens on the plasma membrane of rat spermatozoa using monoclonal antibodies. Exp Cell Res. 1983 Apr 1;144(2):275–284. doi: 10.1016/0014-4827(83)90407-x. [DOI] [PubMed] [Google Scholar]
  22. Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
  23. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  25. Goodman S. R., Zagon I. S., Kulikowski R. R. Identification of a spectrin-like protein in nonerythroid cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7570–7574. doi: 10.1073/pnas.78.12.7570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hiller G., Weber K. Spectrin is absent in various tissue culture cells. Nature. 1977 Mar 10;266(5598):181–183. doi: 10.1038/266181a0. [DOI] [PubMed] [Google Scholar]
  27. Hirokawa N., Cheney R. E., Willard M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell. 1983 Mar;32(3):953–965. doi: 10.1016/0092-8674(83)90080-6. [DOI] [PubMed] [Google Scholar]
  28. Jones H. P., Bradford M. M., McRorie R. A., Cormier M. J. High levels of a calcium-dependent modulator protein in spermatozoa and its similarity to brain modulator protein. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1264–1272. doi: 10.1016/0006-291x(78)90324-8. [DOI] [PubMed] [Google Scholar]
  29. Jones H. P., Lenz R. W., Palevitz B. A., Cormier M. J. Calmodulin localization in mammalian spermatozoa. Proc Natl Acad Sci U S A. 1980 May;77(5):2772–2776. doi: 10.1073/pnas.77.5.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koehler J. K., Nudelman E. D., Hakomori S. A collagen-binding protein on the surface of ejaculated rabbit spermatozoa. J Cell Biol. 1980 Aug;86(2):529–536. doi: 10.1083/jcb.86.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Koehler J. K. The mammalian sperm surface: studies with specific labeling techniques. Int Rev Cytol. 1978;54:73–108. doi: 10.1016/s0074-7696(08)60165-5. [DOI] [PubMed] [Google Scholar]
  32. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Lazarides E., Nelson W. J. Expression of spectrin in nonerythroid cells. Cell. 1982 Dec;31(3 Pt 2):505–508. doi: 10.1016/0092-8674(82)90306-3. [DOI] [PubMed] [Google Scholar]
  35. Lehto V. P. 140 000 Dalton surface glycoprotein. A plasma membrane component of the detergent-resistant cytoskeletal preparations of cultured human fibroblasts. Exp Cell Res. 1983 Feb;143(2):271–286. doi: 10.1016/0014-4827(83)90052-6. [DOI] [PubMed] [Google Scholar]
  36. Lehto V. P., Hovi T., Vartio T., Badley R. A., Virtanen I. Reorganization of cytoskeletal and contractile elements during transition of human monocytes into adherent macrophages. Lab Invest. 1982 Oct;47(4):391–399. [PubMed] [Google Scholar]
  37. Lehto V. P., Vartio T., Badley R. A., Virtanen I. Characterization of a detergent-resistant surface lamina in cultured human fibroblasts. Exp Cell Res. 1983 Feb;143(2):287–294. doi: 10.1016/0014-4827(83)90053-8. [DOI] [PubMed] [Google Scholar]
  38. Lehto V. P., Virtanen I. Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr 230,000 daltons (p230). J Cell Biol. 1983 Mar;96(3):703–716. doi: 10.1083/jcb.96.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lehto V. P., Virtanen I., Paasivuo R., Ralston R., Alitalo K. The p36 substrate of tyrosine-specific protein kinases co-localizes with non-erythrocyte alpha-spectrin antigen, p230, in surface lamina of cultured fibroblasts. EMBO J. 1983;2(10):1701–1705. doi: 10.1002/j.1460-2075.1983.tb01645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lehtonen E., Lehto V. P., Paasivuo R., Virtanen I. Parietal and visceral endoderm differ in their expression of intermediate filaments. EMBO J. 1983;2(7):1023–1028. doi: 10.1002/j.1460-2075.1983.tb01540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lenz R. W., Cormier M. J. Effects of calmodulin-binding drugs on the guinea pig spermatozoon acrosome reaction and the use of these drugs as vaginal contraceptive agents in rabbits. Ann N Y Acad Sci. 1982;383:85–97. doi: 10.1111/j.1749-6632.1982.tb23163.x. [DOI] [PubMed] [Google Scholar]
  42. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Means A. R., Tash J. S., Chafouleas J. G., Lagace L., Guerriero V. Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP. Ann N Y Acad Sci. 1982;383:69–84. doi: 10.1111/j.1749-6632.1982.tb23162.x. [DOI] [PubMed] [Google Scholar]
  44. Myles D. G., Primakoff P., Bellvé A. R. Surface domains of the guinea pig sperm defined with monoclonal antibodies. Cell. 1981 Feb;23(2):433–439. doi: 10.1016/0092-8674(81)90138-0. [DOI] [PubMed] [Google Scholar]
  45. Nicolson G. L., Usui N., Yanagimachi R., Yanagimachi H., Smith J. R. Lectin-binding sites on the plasma membranes of rabbit spermatozoa. Changes in surface receptors during epididymal Maturation and after ejaculation. J Cell Biol. 1977 Sep;74(3):950–962. doi: 10.1083/jcb.74.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Palfrey H. C., Schiebler W., Greengard P. A major calmodulin-binding protein common to various vertebrate tissues. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3780–3784. doi: 10.1073/pnas.79.12.3780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Peterson R., Russell L., Bundman D., Freund M. Presence of microfilaments and tubular structures in boar spermatozoa after chemically inducing the acrosome reaction. Biol Reprod. 1978 Oct;19(3):459–466. doi: 10.1095/biolreprod19.3.459. [DOI] [PubMed] [Google Scholar]
  48. Pollard T. D. Cytoplasmic contractile proteins. J Cell Biol. 1981 Dec;91(3 Pt 2):156s–165s. doi: 10.1083/jcb.91.3.156s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Primakoff P., Myles D. G. A map of the guinea pig sperm surface constructed with monoclonal antibodies. Dev Biol. 1983 Aug;98(2):417–428. doi: 10.1016/0012-1606(83)90371-8. [DOI] [PubMed] [Google Scholar]
  50. Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
  51. Russell L. D., Peterson R. N., Russell T. A., Hunt W. Electrophoretic map of boar sperm plasma membrane polypeptides and localization and fractionation of specific polypeptide subclasses. Biol Reprod. 1983 Mar;28(2):393–413. doi: 10.1095/biolreprod28.2.393. [DOI] [PubMed] [Google Scholar]
  52. Sandoz D., Gounon P., Karsenti E., Sauron M. E. Immunocytochemical localization of tubulin, actin, and myosin in axonemes of ciliated cells from quail oviduct. Proc Natl Acad Sci U S A. 1982 May;79(10):3198–3202. doi: 10.1073/pnas.79.10.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sanger J. W., Sanger J. M. Polymerization of sperm actin in the presence of cytochalasin-B. J Exp Zool. 1975 Sep;193(3):441–447. doi: 10.1002/jez.1401930323. [DOI] [PubMed] [Google Scholar]
  54. Shapiro B. M., Schackmann R. W., Gabel C. A. Molecular approaches to the study of fertilization. Annu Rev Biochem. 1981;50:815–843. doi: 10.1146/annurev.bi.50.070181.004123. [DOI] [PubMed] [Google Scholar]
  55. Sobue K., Kanda K., Inui M., Morimoto K., Kakiuchi S. Actin polymerization induced by calspectin, a calmodulin-binding spectrin-like protein. FEBS Lett. 1982 Nov 8;148(2):221–225. doi: 10.1016/0014-5793(82)80811-9. [DOI] [PubMed] [Google Scholar]
  56. Spruill W. A., Steiner A. L., Tres L. L., Kierszenbaum A. L. Follicle-stimulating hormone-dependent phosphorylation of vimentin in cultures of rat Sertoli cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):993–997. doi: 10.1073/pnas.80.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  58. Strauch A. R., Luna E. J., LaFountain J. R., Jr Biochemical analysis of actin in crane-fly gonial cells: evidence for actin in spermatocytes and spermatids--but not sperm. J Cell Biol. 1980 Jul;86(1):315–325. doi: 10.1083/jcb.86.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Tamblyn T. M. Identification of actin in boar epididymal spermatozoa. Biol Reprod. 1980 Apr;22(3):727–734. doi: 10.1093/biolreprod/22.3.727. [DOI] [PubMed] [Google Scholar]
  60. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Virtanen I., Lehto V. P., Lehtonen E., Badley R. A. Organization of intermediate filaments in cultured fibroblasts upon disruption of microtubules by cold treatment. Eur J Cell Biol. 1980 Dec;23(1):80–84. [PubMed] [Google Scholar]
  65. Virtanen I., Lehto V. P., Lehtonen E., Vartio T., Stenman S., Kurki P., Wager O., Small J. V., Dahl D., Badley R. A. Expression of intermediate filaments in cultured cells. J Cell Sci. 1981 Aug;50:45–63. doi: 10.1242/jcs.50.1.45. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES