Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):1101–1109. doi: 10.1083/jcb.99.3.1101

Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane

PMCID: PMC2113389  PMID: 6088553

Abstract

We studied the effects of changes in microtubule assembly status upon the intracellular transport of an integral membrane protein from the rough endoplasmic reticulum to the plasma membrane. The protein was the G glycoprotein of vesicular stomatitis virus in cells infected with the Orsay-45 temperature-sensitive mutant of the virus; the synchronous intracellular transport of the G protein could be initiated by a temperature shift-down protocol. The intracellular and surface- expressed G protein were separately detected and localized in the same cells at different times after the temperature shift, by double- immunofluorescence microscopic measurements, and the extent of sialylation of the G protein at different times was quantitated by immunoprecipitation and SDS PAGE of [35S]methionine-labeled cell extracts. Neither complete disassembly of the cytoplasmic microtubules by nocodazole treatment, nor the radical reorganization of microtubules upon taxol treatment, led to any perceptible changes in the rate or extent of G protein sialylation, nor to any marked changes in the rate or extent of surface appearance of the G protein. However, whereas in control cells the surface expression of G was polarized, at membrane regions in juxtaposition to the perinuclear compact Golgi apparatus, in cells with disassembled microtubules the surface expression of the G protein was uniform, corresponding to the intracellular dispersal of the elements of the Golgi apparatus. The mechanisms of transfer of integral proteins from the rough endoplasmic reticulum to the Golgi apparatus, and from the Golgi apparatus to the plasma membrane, are discussed in the light of these observations, and compared with earlier studies of the intracellular transport of secretory proteins.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee D., Manning C. P., Redman C. M. The in vivo effect of colchicine on the addition of galactose and sialic acid to rat hepatic serum glycoproteins. J Biol Chem. 1976 Jul 10;251(13):3887–3892. [PubMed] [Google Scholar]
  2. Bergmann J. E., Kupfer A., Singer S. J. Membrane insertion at the leading edge of motile fibroblasts. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1367–1371. doi: 10.1073/pnas.80.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergmann J. E., Singer S. J. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J Cell Biol. 1983 Dec;97(6):1777–1787. doi: 10.1083/jcb.97.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergmann J. E., Tokuyasu K. T., Singer S. J. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1746–1750. doi: 10.1073/pnas.78.3.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blok J., Ginsel L. A., Mulder-Stapel A. A., Onderwater J. J., Daems W. T. The effect of colchicine on the intracellular transport of 3H-fucose-labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue. An autoradiographical and biochemical study. Cell Tissue Res. 1981;215(1):1–12. doi: 10.1007/BF00236244. [DOI] [PubMed] [Google Scholar]
  6. Boyd A. E., 3rd, Bolton W. E., Brinkley B. R. Microtubules and beta cell function: effect of colchicine on microtubules and insulin secretion in vitro by mouse beta cells. J Cell Biol. 1982 Feb;92(2):425–434. doi: 10.1083/jcb.92.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broadwell R. D., Cataldo A. M. The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. I. Cell bodies and dendrites. J Histochem Cytochem. 1983 Sep;31(9):1077–1088. doi: 10.1177/31.9.6309951. [DOI] [PubMed] [Google Scholar]
  8. Busson-Mabillot S., Chambaut-Guérin A. M., Ovtracht L., Muller P., Rossignol B. Microtubules and protein secretion in rat lacrimal glands: localization of short-term effects of colchicine on the secretory process. J Cell Biol. 1982 Oct;95(1):105–117. doi: 10.1083/jcb.95.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Claude A. Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol. 1970 Dec;47(3):745–766. doi: 10.1083/jcb.47.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Brabander M. J., Van de Veire R. M., Aerts F. E., Borgers M., Janssen P. A. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 1976 Mar;36(3):905–916. [PubMed] [Google Scholar]
  11. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):227–240. doi: 10.1101/sqb.1982.046.01.026. [DOI] [PubMed] [Google Scholar]
  12. Dennert G., Podack E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J Exp Med. 1983 May 1;157(5):1483–1495. doi: 10.1084/jem.157.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flickinger C. J. The development of Golgi complexes and their dependence upon the nucleus inmebae. J Cell Biol. 1969 Nov;43(2):250–262. doi: 10.1083/jcb.43.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geiger B., Rosen D., Berke G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol. 1982 Oct;95(1):137–143. doi: 10.1083/jcb.95.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Genty N., Bussereau F. Is cytoskeleton involved in vesicular stomatitis virus reproduction? J Virol. 1980 Jun;34(3):777–781. doi: 10.1128/jvi.34.3.777-781.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knipe D. M., Baltimore D., Lodish H. F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knipe D. M., Lodish H. F., Baltimore D. Localization of two cellular forms of the vesicular stomatitis viral glycoprotein. J Virol. 1977 Mar;21(3):1121–1127. doi: 10.1128/jvi.21.3.1121-1127.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kupfer A., Dennert G., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7224–7228. doi: 10.1073/pnas.80.23.7224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kupfer A., Louvard D., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2603–2607. doi: 10.1073/pnas.79.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lane L. C. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 1978 Jun 1;86(2):655–664. doi: 10.1016/0003-2697(78)90792-3. [DOI] [PubMed] [Google Scholar]
  21. Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Orci L., Rouiller C., Jeanrenaud B. A role for the microtubular system in the release of very low density lipoproteins by perfused mouse livers. J Biol Chem. 1973 Oct 10;248(19):6862–6870. [PubMed] [Google Scholar]
  22. Lodish H. F., Weiss R. A. Selective isolation of mutants of vesicular stomatitis virus defective in production of the viral glycoprotein. J Virol. 1979 Apr;30(1):177–189. doi: 10.1128/jvi.30.1.177-189.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lohmander S., Madsen K., Hinek A. Secretion of proteoglycans by chondrocytes. Influence of colchicine, cytochalasin B, and beta-D-xyloside. Arch Biochem Biophys. 1979 Jan;192(1):148–157. doi: 10.1016/0003-9861(79)90080-8. [DOI] [PubMed] [Google Scholar]
  24. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maul G. G. On the relationship between the Golgi apparatus and annulate lamellae. J Ultrastruct Res. 1970 Feb;30(3):368–384. doi: 10.1016/s0022-5320(70)80069-7. [DOI] [PubMed] [Google Scholar]
  26. Morré D. J., Ovtracht L. Structure of rat liver Golgi apparatus: relationship to lipoprotein secretion. J Ultrastruct Res. 1981 Mar;74(3):284–295. doi: 10.1016/s0022-5320(81)80119-0. [DOI] [PubMed] [Google Scholar]
  27. Podack E. R., Dennert G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. 1983 Mar 31-Apr 6Nature. 302(5907):442–445. doi: 10.1038/302442a0. [DOI] [PubMed] [Google Scholar]
  28. Quaroni A., Kirsch K., Weiser M. M. Synthesis of membrane glycoproteins in rat small-intestinal villus cells. Effect of colchicine on the redistribution of L-[1,5,6-3H]fucose-labelled membrane glycoproteins among Golgi, lateral basal and microvillus membranes. Biochem J. 1979 Jul 15;182(1):213–221. doi: 10.1042/bj1820213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
  30. Redman C. M., Banerjee D., Howell K., Palade G. E. Colchicine inhibition of plasma protein release from rat hepatocytes. J Cell Biol. 1975 Jul;66(1):42–59. doi: 10.1083/jcb.66.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rogalski A. A., Singer S. J. Associations of elements of the Golgi apparatus with microtubules. J Cell Biol. 1984 Sep;99(3):1092–1100. doi: 10.1083/jcb.99.3.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Seeman P., Chau-Wong M., Moyyen S. Membrane expansion by vinblastine and strychnine. Nat New Biol. 1973 Jan 3;241(105):22–22. doi: 10.1038/newbio241022a0. [DOI] [PubMed] [Google Scholar]
  33. Williams J. A. Effects of antimitotic agents on ultrastructure and intracellular transport of protein in pancreatic acini. Methods Cell Biol. 1981;23:247–258. doi: 10.1016/s0091-679x(08)61502-2. [DOI] [PubMed] [Google Scholar]
  34. Zilberstein A., Snider M. D., Porter M., Lodish H. F. Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell. 1980 Sep;21(2):417–427. doi: 10.1016/0092-8674(80)90478-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES