Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):947–961. doi: 10.1083/jcb.99.3.947

Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived Endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro

PMCID: PMC2113390  PMID: 6470046

Abstract

The proliferation and morphological differentiation of bovine kidney collecting-tubule epithelial cells has been examined as a function of substrata and plasma factors. Collecting kidney tubule explant maintained in vitro gave rise to two distinct cell populations; one was composed mostly of fibroblastic cells whereas the other was epithelioid (EP cells). The proliferation of fibroblastic cells when exposed to serum-supplemented medium was best expressed when cells were maintained on a basement membrane produced by bovine corneal endothelial cells. This basement membrane has a composition, which in previous studies has been shown to favor the proliferation of mesenchymal cells. In contrast, the proliferation of EP cells was best expressed when cells were maintained on a basement membrane produced by the mouse-derived endodermal cell line PF-HR-9 (HR-9-BM). This basement membrane has a biochemical composition very similar to the basement membrane underlying the kidney tubules. Although the fibroblast confluent monolayer maintained on bovine corneal endothelial cell extracellular matrix did not undergo morphogenesis, the confluent monolayer of EP cells maintained on HR-9-BM shows hemicyst formation, suggesting that they were capable of vectorial fluid transport. They also built a complex three-dimensional kidney tubulelike network. Some tubules became grossly visible and floated into the tissue culture medium, remaining tethered to the cell monolayer at either end of the tubule. On an ultrastructural level, the tubules consisted of cells held together with junctional complexes arranged so as to form a lumen. The smallest lumen were bordered by 2-3 cells, and the largest ones by 8-15 cells. The lumens of the larger tubules did contain granular fibrillar and amorphous debris. Low-density EP cell cultures maintained on HR-9- BM could be induced to proliferate at a rate approaching that of cultures exposed to serum when they were exposed to medium supplemented with high-density lipoprotein (HDL, 750 micrograms protein/ml) and transferrin (50 micrograms/ml). When exposed to HDL concentrations equal or lower than 250 micrograms protein/ml, low-density cultures proliferated at a slow rate and readily formed tubulelike structures. This observation indicates that EP cells do not need to reach confluence to undergo morphogenesis, and that HDL, which in the presence of transferrin supports the cell proliferation, can favor their differentiation into tubulelike structures once its concentration becomes limiting for mitogenesis.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Goldstein J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980 Jul;21(5):505–517. [PubMed] [Google Scholar]
  3. Chuman L., Fine L. G., Cohen A. H., Saier M. H., Jr Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J Cell Biol. 1982 Sep;94(3):506–510. doi: 10.1083/jcb.94.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung S. D., Alavi N., Livingston D., Hiller S., Taub M. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J Cell Biol. 1982 Oct;95(1):118–126. doi: 10.1083/jcb.95.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen D. C., Massoglia S. L., Gospodarowicz D. Correlation between two effects of high density lipoproteins on vascular endothelial cells. The induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and the support of cellular proliferation. J Biol Chem. 1982 Aug 25;257(16):9429–9437. [PubMed] [Google Scholar]
  6. Cohen D. C., Massoglia S. L., Gospodarowicz D. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in vascular endothelial cells. Separate sterol and non-sterol components. J Biol Chem. 1982 Sep 25;257(18):11106–11112. [PubMed] [Google Scholar]
  7. Ekblom P., Alitalo K., Vaheri A., Timpl R., Saxén L. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):485–489. doi: 10.1073/pnas.77.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ekblom P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol. 1981 Oct;91(1):1–10. doi: 10.1083/jcb.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ekblom P., Lehtonen E., Saxén L., Timpl R. Shift in collagen type as an early response to induction of the metanephric mesenchyme. J Cell Biol. 1981 May;89(2):276–283. doi: 10.1083/jcb.89.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ekblom P., Miettinen A., Virtanen I., Wahlström T., Dawnay A., Saxén L. In vitro segregation of the metanephric nephron. Dev Biol. 1981 May;84(1):88–95. doi: 10.1016/0012-1606(81)90373-0. [DOI] [PubMed] [Google Scholar]
  11. Ekblom P., Thesleff I., Miettinen A., Saxén L. Organogenesis in a defined medium supplemented with transferrin. Cell Differ. 1981 Nov;10(5):281–288. doi: 10.1016/0045-6039(81)90010-5. [DOI] [PubMed] [Google Scholar]
  12. Ekblom P., Thesleff I., Saxén L., Miettinen A., Timpl R. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction. Proc Natl Acad Sci U S A. 1983 May;80(9):2651–2655. doi: 10.1073/pnas.80.9.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engvall E., Ruoslahti E., Miller E. J. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med. 1978 Jun 1;147(6):1584–1595. doi: 10.1084/jem.147.6.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Faust J. R., Goldstein J. L., Brown M. S. Synthesis of ubiquinone and cholesterol in human fibroblasts: regulation of a branched pathway. Arch Biochem Biophys. 1979 Jan;192(1):86–99. doi: 10.1016/0003-9861(79)90074-2. [DOI] [PubMed] [Google Scholar]
  15. Feder J., Marasa J. C., Olander J. V. The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J Cell Physiol. 1983 Jul;116(1):1–6. doi: 10.1002/jcp.1041160102. [DOI] [PubMed] [Google Scholar]
  16. Folkman J., Greenspan H. P. Influence of geometry on control of cell growth. Biochim Biophys Acta. 1975 Dec 31;417(3-4):211–236. doi: 10.1016/0304-419x(75)90011-6. [DOI] [PubMed] [Google Scholar]
  17. Folkman J., Haudenschild C. Angiogenesis in vitro. Nature. 1980 Dec 11;288(5791):551–556. doi: 10.1038/288551a0. [DOI] [PubMed] [Google Scholar]
  18. Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
  19. Goldstein J. L., Helgeson J. A., Brown M. S. Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J Biol Chem. 1979 Jun 25;254(12):5403–5409. [PubMed] [Google Scholar]
  20. Gospodarowicz D., Cheng J., Lirette M. Bovine brain and pituitary fibroblast growth factors: comparison of their abilities to support the proliferation of human and bovine vascular endothelial cells. J Cell Biol. 1983 Dec;97(6):1677–1685. doi: 10.1083/jcb.97.6.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gospodarowicz D., Cohen D. C., Massoglia S. L. Stimulation of the proliferation of the Madin-Darby canine kidney (MDCK) epithelial cell line by high-density lipoproteins and their induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. J Cell Physiol. 1983 Oct;117(1):76–90. doi: 10.1002/jcp.1041170112. [DOI] [PubMed] [Google Scholar]
  22. Gospodarowicz D., Gonzalez R., Fujii D. K. Are factors originating from serum, plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells? J Cell Physiol. 1983 Feb;114(2):191–202. doi: 10.1002/jcp.1041140208. [DOI] [PubMed] [Google Scholar]
  23. Gospodarowicz D., Greenburg G., Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 1978 Nov;38(11 Pt 2):4155–4171. [PubMed] [Google Scholar]
  24. Gospodarowicz D., Greenburg G., Foidart J. M., Savion N. The production and localization of laminin in cultured vascular and corneal endothelial cells. J Cell Physiol. 1981 May;107(2):171–183. doi: 10.1002/jcp.1041070203. [DOI] [PubMed] [Google Scholar]
  25. Gospodarowicz D., Greenburg G., Foidart J. M., Savion N. The production and localization of laminin in cultured vascular and corneal endothelial cells. J Cell Physiol. 1981 May;107(2):171–183. doi: 10.1002/jcp.1041070203. [DOI] [PubMed] [Google Scholar]
  26. Gospodarowicz D., Greenburg G. The coating of bovine and rabbit corneas denuded of their endothelium with bovine corneal endothelial cells. Exp Eye Res. 1979 Mar;28(3):249–265. doi: 10.1016/0014-4835(79)90087-3. [DOI] [PubMed] [Google Scholar]
  27. Gospodarowicz D., Hirabayashi K., Giguère L., Tauber J. P. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J Cell Biol. 1981 Jun;89(3):568–578. doi: 10.1083/jcb.89.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gospodarowicz D., Ill C. Extracellular matrix and control of proliferation of vascular endothelial cells. J Clin Invest. 1980 Jun;65(6):1351–1364. doi: 10.1172/JCI109799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gospodarowicz D., Ill C. The extracellular matrix and the control of proliferation of corneal endothelial and lens epithelial cells. Exp Eye Res. 1980 Aug;31(2):181–199. doi: 10.1016/0014-4835(80)90077-9. [DOI] [PubMed] [Google Scholar]
  30. Gospodarowicz D., Lui G. M., Cheng J. Purification in high yield of brain fibroblast growth factor by preparative isoelectric focusing at pH 9.6. J Biol Chem. 1982 Oct 25;257(20):12266–12276. [PubMed] [Google Scholar]
  31. Gospodarowicz D., Massoglia S. Plasma factors involved in the in vitro control of proliferation of bovine lens cells grown in defined medium. effect of fibroblast growth factor on cell longevity. Exp Eye Res. 1982 Sep;35(3):259–270. doi: 10.1016/s0014-4835(82)80050-x. [DOI] [PubMed] [Google Scholar]
  32. Gospodarowicz D., Mescher A. L., Birdwell C. R. Stimulation of corneal endothelial cell proliferations in vitro by fibroblast and epidermal growth factors. Exp Eye Res. 1977 Jul;25(1):75–89. doi: 10.1016/0014-4835(77)90248-2. [DOI] [PubMed] [Google Scholar]
  33. Gospodarowicz D., Tauber J. P. Growth factors and the extracellular matrix. Endocr Rev. 1980 Summer;1(3):201–227. doi: 10.1210/edrv-1-3-201. [DOI] [PubMed] [Google Scholar]
  34. Gospodarowicz D., Vlodavsky I., Savion N. The role of fibroblast growth factor and the extracellular matrix in the control of proliferation and differentiation of corneal endothelial cells. Vision Res. 1981;21(1):87–103. doi: 10.1016/0042-6989(81)90141-3. [DOI] [PubMed] [Google Scholar]
  35. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Habenicht A. J., Glomset J. A., Ross R. Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem. 1980 Jun 10;255(11):5134–5140. [PubMed] [Google Scholar]
  37. Hall H. G., Farson D. A., Bissell M. J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4672–4676. doi: 10.1073/pnas.79.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Herzlinger D. A., Easton T. G., Ojakian G. K. The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule. J Cell Biol. 1982 May;93(2):269–277. doi: 10.1083/jcb.93.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hogan B. L., Taylor A., Kurkinen M., Couchman J. R. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix. J Cell Biol. 1982 Oct;95(1):197–204. doi: 10.1083/jcb.95.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Huneeus V. Q., Wiley M. H., Siperstein M. D. Isopentenyladenine as a mediator of mevalonate-regulated DNA replication. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5842–5846. doi: 10.1073/pnas.77.10.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ill C. R., Gospodarowicz D. Factors involved in supporting the growth and steroidogenic functions of bovine adrenal cortical cells maintained on extracellular matrix and exposed to a serum-free medium. J Cell Physiol. 1982 Dec;113(3):373–384. doi: 10.1002/jcp.1041130305. [DOI] [PubMed] [Google Scholar]
  42. Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kramer R. H., Gonzalez R., Nicolson G. L. Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int J Cancer. 1980 Nov 15;26(5):639–645. doi: 10.1002/ijc.2910260516. [DOI] [PubMed] [Google Scholar]
  44. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  45. Leighton J., Brada Z., Estes L. W., Justh G. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science. 1969 Jan 31;163(3866):472–473. doi: 10.1126/science.163.3866.472. [DOI] [PubMed] [Google Scholar]
  46. Leighton J., Estes L. W., Mansukhani S., Brada Z. A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium. Cancer. 1970 Nov;26(5):1022–1028. doi: 10.1002/1097-0142(197011)26:5<1022::aid-cncr2820260509>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  47. Leivo I., Alitalo K., Risteli L., Vaheri A., Timpl R., Wartiovaara J. Basal lamina glycoproteins laminin and type IV collagen are assembled into a fine-fibered matrix in cultures of a teratocarcinoma-derived endodermal cell line. Exp Cell Res. 1982 Jan;137(1):15–23. doi: 10.1016/0014-4827(82)90002-7. [DOI] [PubMed] [Google Scholar]
  48. Maciag T., Kadish J., Wilkins L., Stemerman M. B., Weinstein R. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol. 1982 Sep;94(3):511–520. doi: 10.1083/jcb.94.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  50. Mauchamp J., Margotat A., Chambard M., Charrier B., Remy L., Michel-Bechet M. Polarity of three-dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 1979;204(3):417–430. doi: 10.1007/BF00233653. [DOI] [PubMed] [Google Scholar]
  51. Quesney-Huneeus V., Wiley M. H., Siperstein M. D. Essential role for mevalonate synthesis in DNA replication. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5056–5060. doi: 10.1073/pnas.76.10.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Robinson J., Gospodarowicz D. Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells. J Cell Physiol. 1983 Dec;117(3):368–376. doi: 10.1002/jcp.1041170312. [DOI] [PubMed] [Google Scholar]
  53. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  55. Strickland S., Smith K. K., Marotti K. R. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell. 1980 Sep;21(2):347–355. doi: 10.1016/0092-8674(80)90471-7. [DOI] [PubMed] [Google Scholar]
  56. Taub M., Chuman L., Saier M. H., Jr, Sato G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3338–3342. doi: 10.1073/pnas.76.7.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Taub M., Sato G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J Cell Physiol. 1980 Nov;105(2):369–378. doi: 10.1002/jcp.1041050220. [DOI] [PubMed] [Google Scholar]
  58. Tauber J. P., Cheng J., Gospodarowicz D. Effect of high and low density lipoproteins on proliferation of cultured bovine vascular endothelial cells. J Clin Invest. 1980 Oct;66(4):696–708. doi: 10.1172/JCI109907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Tauber J. P., Cheng J., Massoglia S., Gospodarowicz D. High density lipoproteins and the growth of vascular endothelial cells in serum-free medium. In Vitro. 1981 Jun;17(6):519–530. doi: 10.1007/BF02633513. [DOI] [PubMed] [Google Scholar]
  60. Tseng S. C., Savion N., Gospodarowicz D., Stern R. Characterization of collagens synthesized by cultured bovine corneal endothelial cells. J Biol Chem. 1981 Apr 10;256(7):3361–3365. [PubMed] [Google Scholar]
  61. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974 Nov;77(2):314–346. [PMC free article] [PubMed] [Google Scholar]
  62. Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES