Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):1130–1139. doi: 10.1083/jcb.99.3.1130

Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain

PMCID: PMC2113393  PMID: 6381505

Abstract

In contrast to the intracellular (cytoplasmic) localization of chondroitin sulfate proteoglycans in adult brain (Aquino, D. A., R. U. Margolis, and R. K. Margolis, 1984, J. Cell Biol. 99:940-952), immunoelectron microscopic studies in immature (7 d postnatal) rat cerebellum demonstrated almost exclusively extracellular staining in the granule cell and molecular layers. Staining was also extracellular and/or associated with plasma membranes in the region of the presumptive white matter. Axons, which are unmyelinated at this age, generally did not stain, although faint intracellular staining was present in some astrocytes. At 10 and 14 d postnatal there was a significant decrease in extracellular space and staining, and by 21 d distinct cytoplasmic staining of neurons and astrocytes appeared. This intracellular staining further increased by 33 d so as to closely resemble the pattern seen in adult brain. Analyses of the proteoglycans isolated from 7-d-old and adult brain demonstrated that they have essentially identical biochemical compositions, immunochemical reactivity, size, charge, and density. These findings indicate that the antibodies used in this study recognize the same macromolecule in both early postnatal and adult brain, and that the localization of this proteoglycan changes progressively from an extracellular to an intracellular location during brain development.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. B., Meier S. Effect of hyaluronidase treatment on the distribution of cranial neural crest cells in the chick embryo. J Exp Zool. 1982 Jul 1;221(3):329–335. doi: 10.1002/jez.1402210308. [DOI] [PubMed] [Google Scholar]
  2. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve. J Cell Biol. 1984 Sep;99(3):1117–1129. doi: 10.1083/jcb.99.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berod A., Hartman B. K., Pujol J. F. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem. 1981 Jul;29(7):844–850. doi: 10.1177/29.7.6167611. [DOI] [PubMed] [Google Scholar]
  4. Bolender D. L., Seliger W. G., Markwald R. R. A histochemical analysis of polyanoinic compounds found in the extracellular matrix encountered by migrating cephalic neural crest cells. Anat Rec. 1980;196(4):401–412. doi: 10.1002/ar.1091960405. [DOI] [PubMed] [Google Scholar]
  5. Bondareff W., Pysh J. J. Distribution of the extracellular space during postnatal maturation of rat cerebral cortex. Anat Rec. 1968 Apr;160(4):773–780. doi: 10.1002/ar.1091600412. [DOI] [PubMed] [Google Scholar]
  6. Derby M. A. Analysis of glycosaminoglycans within the extracellular environments encountered by migrating neural crest cells. Dev Biol. 1978 Oct;66(2):321–336. doi: 10.1016/0012-1606(78)90241-5. [DOI] [PubMed] [Google Scholar]
  7. Fischer S., Litvak S. The incorporation of microinjected 14C-amino acids into TCA insoluble fractions of the giant axon of the squid. J Cell Physiol. 1967 Aug;70(1):69–74. doi: 10.1002/jcp.1040700110. [DOI] [PubMed] [Google Scholar]
  8. Hedman K., Christner J., Julkunen I., Vaheri A. Chondroitin sulfate at the plasma membranes of cultured fibroblasts. J Cell Biol. 1983 Oct;97(4):1288–1293. doi: 10.1083/jcb.97.4.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kiang W. L., Margolis R. U., Margolis R. K. Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain. J Biol Chem. 1981 Oct 25;256(20):10529–10537. [PubMed] [Google Scholar]
  10. Krayanek S. Structure and orientation of extracellular matrix in developing chick optic tectum. Anat Rec. 1980 May;197(1):95–109. doi: 10.1002/ar.1091970109. [DOI] [PubMed] [Google Scholar]
  11. Lasek R. J., Tytell M. A. Macromolecular transfer from glia to the axon. J Exp Biol. 1981 Dec;95:153–165. doi: 10.1242/jeb.95.1.153. [DOI] [PubMed] [Google Scholar]
  12. Margolis R. U., Margolis R. K., Chang L. B., Preti C. Glycosaminoglycans of brain during development. Biochemistry. 1975 Jan 14;14(1):85–88. doi: 10.1021/bi00672a014. [DOI] [PubMed] [Google Scholar]
  13. Morris J. E., Hopwood J. J., Dorfman A. Biosynthesis of glycosaminoglycans in the developing retina. Dev Biol. 1977 Jul 15;58(2):313–327. doi: 10.1016/0012-1606(77)90094-x. [DOI] [PubMed] [Google Scholar]
  14. Nakanishi S. Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice. Dev Biol. 1983 Feb;95(2):305–316. doi: 10.1016/0012-1606(83)90031-3. [DOI] [PubMed] [Google Scholar]
  15. Oldberg A., Hayman E. G., Ruoslahti E. Isolation of a chondroitin sulfate proteoglycan from a rat yolk sac tumor and immunochemical demonstration of its cell surface localization. J Biol Chem. 1981 Nov 10;256(21):10847–10852. [PubMed] [Google Scholar]
  16. Poole A. R., Pidoux I., Reiner A., Cöster L., Hassell J. R. Mammalian eyes and associated tissues contain molecules that are immunologically related to cartilage proteoglycan and link protein. J Cell Biol. 1982 Jun;93(3):910–920. doi: 10.1083/jcb.93.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poole A. R., Pidoux I., Reiner A., Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol. 1982 Jun;93(3):921–937. doi: 10.1083/jcb.93.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Singer M., Salpeter M. M. The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol. 1966 Nov;120(3):281–315. doi: 10.1002/jmor.1051200305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES