Abstract
Rabbit lens epithelial cells synthesize and secrete a variety of [35S]sulphate-labeled glycoconjugates in vitro. Associated with the cell layer, and with the medium, was a high molecular weight glycoconjugate(s) that contained heparan sulphate which was apparently covalently linked to sulphated glycoprotein. This component(s) was eluted in the void volume of a Sepharose CL-2B column and could not be fractionated by detergent treatment or extraction with lipid solvents. The cell layer also contained glycosaminoglycans (72% heparan sulphate, 28% chondroitin sulphate), as well as a small proportion of a low molecular weight sulphated glycoprotein. The major 35S-labeled species secreted into the medium were sulphated glycoproteins with approximate molecular weights of 120,000 and 35,000 together with a heparan sulphate proteoglycan. This proteoglycan could be precipitated from the culture medium with 30% saturated (NH4)2SO4 and eluted from Sepharose CL-4B columns at approximately the same position (Kav = 0.15) as heparan sulphate proteoglycans described in the basement membrane of the EHS "sarcoma" (Hassell, J. R., P. G. Robey, H. J. Barrach, J. Wilczek, S. I. Rennard, and G. R. Martin, 1980, Proc. Natl. Acad. Sci. USA, 77:4494-4498) and of the mouse mammary epithelium (David, G., and M. Bernfield, 1981, J. Cell Biol., 91:281-286). Its presence in the culture medium was unanticipated but may be explained by the inability of these cultures to deposit a basement membrane when grown on a plastic surface. The relationship of this heparan sulphate proteoglycan to the lens epithelial basement membrane is the subject of the following paper.
Full Text
The Full Text of this article is available as a PDF (956.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bender B. L., Jaffe R., Carlin B., Chung A. E. Immunolocalization of entactin, a sulfated basement membrane component, in rodent tissues, and comparison with GP-2 (laminin). Am J Pathol. 1981 Jun;103(3):419–426. [PMC free article] [PubMed] [Google Scholar]
- Bertrand F., Veissière D., Picard J. Sulphated glycoproteins and proteoglycans from rat liver plasma membranes: partial characterization of a sulphated glycopeptide and glycosaminoglycans. Int J Biochem. 1983;15(1):17–26. doi: 10.1016/0020-711x(83)90006-x. [DOI] [PubMed] [Google Scholar]
- Bumol T. F., Reisfeld R. A. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1245–1249. doi: 10.1073/pnas.79.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buonassisi V., Colburn P. Biological significance of heparan sulfate proteoglycans. Ann N Y Acad Sci. 1982;401:76–84. doi: 10.1111/j.1749-6632.1982.tb25708.x. [DOI] [PubMed] [Google Scholar]
- Carlin B., Jaffe R., Bender B., Chung A. E. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981 May 25;256(10):5209–5214. [PubMed] [Google Scholar]
- Cohn R. H., Banerjee S. D., Bernfield M. R. Basal lamina of embryonic salivary epithelia. Nature of glycosaminoglycan and organization of extracellular materials. J Cell Biol. 1977 May;73(2):464–478. doi: 10.1083/jcb.73.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cossu G., Warren L. Lactosaminoglycans and heparan sulfate are covalently bound to fibronectins synthesized by mouse stem teratocarcinoma cells. J Biol Chem. 1983 May 10;258(9):5603–5607. [PubMed] [Google Scholar]
- David G., Bernfield M. Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells. J Cell Biol. 1981 Oct;91(1):281–286. doi: 10.1083/jcb.91.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dische Z., Zelmanis G., Rothschild C. The hexosaminohexuronide of the bovine lens capsule. Arch Biochem Biophys. 1967 Sep;121(3):685–694. doi: 10.1016/0003-9861(67)90054-9. [DOI] [PubMed] [Google Scholar]
- Gordon J. R., Bernfield M. R. The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev Biol. 1980 Jan;74(1):118–135. doi: 10.1016/0012-1606(80)90056-1. [DOI] [PubMed] [Google Scholar]
- Grant M. E., Heathcote J. G., Orkin R. W. Current concepts of basement-membrane structure and function. Biosci Rep. 1981 Nov;1(11):819–842. doi: 10.1007/BF01114816. [DOI] [PubMed] [Google Scholar]
- Hart G. W. Biosynthesis of glycosaminolgycans during corneal development. J Biol Chem. 1976 Nov 10;251(21):6513–6521. [PubMed] [Google Scholar]
- Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heathcote G., Sear C. H., Grant M. E. Studies on the assembly of the rat lens capsule. Biosynthesis and partial characterization of the collagenous components. Biochem J. 1978 Oct 15;176(1):283–294. doi: 10.1042/bj1760283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heathcote J. G., Bailey A. J., Grant M. E. Studies on the assembly of the rat lens capsule. Biosynthesis of a cross-linked collagenous component of high molecular weight. Biochem J. 1980 Aug 15;190(2):229–237. doi: 10.1042/bj1900229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heathcote J. G., Grant M. E. The macromolecular composition of the embryonic chick lens capsule. Preliminary biosynthetic studies on the collagenous and non-collagenous glycoproteins. Exp Eye Res. 1982 Jun;34(6):985–1000. doi: 10.1016/0014-4835(82)90078-1. [DOI] [PubMed] [Google Scholar]
- Heathcote J. G., Grant M. E. The molecular organization of basement membranes. Int Rev Connect Tissue Res. 1981;9:191–264. doi: 10.1016/b978-0-12-363709-3.50011-5. [DOI] [PubMed] [Google Scholar]
- Heifetz A., Allen D. Biosynthesis of cell surface sulfated glycoproteins by cultured vascular endothelial cells. Biochemistry. 1982 Jan 5;21(1):171–177. doi: 10.1021/bi00530a029. [DOI] [PubMed] [Google Scholar]
- Hogan B. L., Taylor A., Cooper A. R. Murine parietal endoderm cells synthesise heparan sulphate and 170K and 145K sulphated glycoproteins as components of Reichert's membrane. Dev Biol. 1982 Mar;90(1):210–214. doi: 10.1016/0012-1606(82)90227-5. [DOI] [PubMed] [Google Scholar]
- Hogan B. L., Taylor A., Kurkinen M., Couchman J. R. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix. J Cell Biol. 1982 Oct;95(1):197–204. doi: 10.1083/jcb.95.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S., Hascall V. C., Farquhar M. G. Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J Cell Biol. 1981 Aug;90(2):527–532. doi: 10.1083/jcb.90.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura J. H., Caputo C. B., Hascall V. C. The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 May 10;256(9):4368–4376. [PubMed] [Google Scholar]
- Kjellén L., Pettersson I., Hök M. Cell-surface heparan sulfate: an intercalated membrane proteoglycan. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5371–5375. doi: 10.1073/pnas.78.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi S., Oguri K., Kobayashi K., Okayama M. Isolation and characterization of proteoheparan sulfate synthesized in vitro by rat glomeruli. J Biol Chem. 1983 Oct 10;258(19):12051–12057. [PubMed] [Google Scholar]
- Laurie G. W., Leblond C. P., Martin G. R. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982 Oct;95(1):340–344. doi: 10.1083/jcb.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe-Krentz L. J., Keller J. M. Multiple heparan sulfate proteoglycans synthesized by a basement membrane producing murine embryonal carcinoma cell line. Biochemistry. 1983 Sep 13;22(19):4412–4419. doi: 10.1021/bi00288a011. [DOI] [PubMed] [Google Scholar]
- Moczar E., Laurent M., Courtois Y. Effects of retinal growth factor and of the increase of the number of subcultures on sulfated glycosaminoglycans of bovine lens epithelial cells. Biochim Biophys Acta. 1981 Jun 11;675(1):132–139. doi: 10.1016/0304-4165(81)90078-7. [DOI] [PubMed] [Google Scholar]
- Norling B., Glimelius B., Wasteson A. Heparan sulfate proteoglycan of cultured cells: demonstration of a lipid- and a matrix-associated form. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1265–1272. doi: 10.1016/0006-291x(81)90259-x. [DOI] [PubMed] [Google Scholar]
- Oegema T. R., Jr, Hascall V. C., Dziewiatkowski D. D. Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1975 Aug 10;250(15):6151–6159. [PubMed] [Google Scholar]
- Oohira A., Wight T. N., McPherson J., Bornstein P. Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-2, a basement membrane-producing cell line. J Cell Biol. 1982 Feb;92(2):357–367. doi: 10.1083/jcb.92.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orkin R. W., Gehron P., McGoodwin E. B., Martin G. R., Valentine T., Swarm R. A murine tumor producing a matrix of basement membrane. J Exp Med. 1977 Jan 1;145(1):204–220. doi: 10.1084/jem.145.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parthasarathy N., Spiro R. G. Basement membranes glycosaminoglycans: examination of several membranes and evaluation of the effect of sonic treatment. Arch Biochem Biophys. 1982 Feb;213(2):504–511. doi: 10.1016/0003-9861(82)90576-8. [DOI] [PubMed] [Google Scholar]
- Rapraeger A. C., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteoglycan associates quantitatively with lipid vesicles. J Biol Chem. 1983 Mar 25;258(6):3632–3636. [PubMed] [Google Scholar]
- Risteli L., Timpl R. Isolation and characterization of pepsin fragments of laminin from human placental and renal basement membranes. Biochem J. 1981 Mar 1;193(3):749–755. doi: 10.1042/bj1930749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro A. L., Siegel I. M., Scharff M. D., Robbins E. Characteristics of cultured lens epithelium. Invest Ophthalmol. 1969 Aug;8(4):393–400. [PubMed] [Google Scholar]
- Slayback J. R., Cheung L. W., Geyer R. P. Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem. 1977 Dec;83(2):372–384. doi: 10.1016/0003-2697(77)90046-x. [DOI] [PubMed] [Google Scholar]
- Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
- Veis A., Schwartz D. The structure of acid-soluble basement membrane collagen from bovine anterior lens capsule: molecular parameters and thermal gelation properties. Coll Relat Res. 1981 Apr;1(3):269–286. doi: 10.1016/s0174-173x(81)80004-0. [DOI] [PubMed] [Google Scholar]
- Vogel K. G., Peterson D. W. Extracellular, surface, and intracellular proteoglycans produced by human embryo lung fibroblasts in culture (IMR-90). J Biol Chem. 1981 Dec 25;256(24):13235–13242. [PubMed] [Google Scholar]
- Young R. W., Ocumpaugh D. E. Autoradiographic studies on the growth and development of the lens capsule in the rat. Invest Ophthalmol. 1966 Dec;5(6):583–589. [PubMed] [Google Scholar]
