Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):1117–1129. doi: 10.1083/jcb.99.3.1117

Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve

PMCID: PMC2113411  PMID: 6432802

Abstract

Monospecific antibodies were prepared to a previously characterized chondroitin sulfate proteoglycan of brain and used in conjunction with the peroxidase-antiperoxidase technique to localize the proteoglycan by immunoelectron microscopy. The proteoglycan was found to be exclusively intracellular in adult cerebellum, cerebrum, brain stem, and spinal cord. Some neurons and astrocytes (including Golgi epithelial cells and Bergmann fibers) showed strong cytoplasmic staining. Although in the central nervous system there was heavy axoplasmic staining of many myelinated and unmyelinated fibers, not all axons stained. Staining was also seen in retinal neurons and glia (ganglion cells, horizontal cells, and Muller cells), but several central nervous tissue elements were consistently unstained, including Purkinje cells, oligodendrocytes, myelin, optic nerve axons, nerve endings, and synaptic vesicles. In sympathetic ganglion and peripheral nerve there was no staining of neuronal cell bodies, axons, myelin, or Schwann cells, but in sciatic nerve the Schwann cell basal lamina was stained, as was the extracellular matrix surrounding collagen fibrils. Staining was also observed in connective tissue surrounding the trachea and in the lacunae of tracheal hyaline cartilage. These findings are consistent with immunochemical studies demonstrating that antibodies to the chondroitin sulfate proteoglycan of brain also cross-react to various degrees with certain connective tissue proteoglycans.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. W., Bayliss O. B. Histochemistry of myelin. VII. Analysis of lipid-protein relationships and absence of acid mucopolysaccharide. J Histochem Cytochem. 1968 Feb;16(2):119–127. doi: 10.1177/16.2.119. [DOI] [PubMed] [Google Scholar]
  2. Behnke O., Zelander T. Preservation of intercellular substances by the cationic dye alcian blue in preparative procedures for electron microscopy. J Ultrastruct Res. 1970 Jun;31(5-6):424–428. doi: 10.1016/s0022-5320(70)90159-0. [DOI] [PubMed] [Google Scholar]
  3. Berod A., Hartman B. K., Pujol J. F. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem. 1981 Jul;29(7):844–850. doi: 10.1177/29.7.6167611. [DOI] [PubMed] [Google Scholar]
  4. Bigner D. D., Bigner S. H., Pontén J., Westermark B., Mahaley M. S., Ruoslahti E., Herschman H., Eng L. F., Wikstrand C. J. Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol. 1981 May;40(3):201–229. doi: 10.1097/00005072-198105000-00001. [DOI] [PubMed] [Google Scholar]
  5. Bondareff W. Demonstration of an intercellular substance in mouse cerebral cortex. Z Zellforsch Mikrosk Anat. 1967;81(3):366–373. doi: 10.1007/BF00342761. [DOI] [PubMed] [Google Scholar]
  6. Bunge R. P., Bunge M. B. Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers. J Cell Biol. 1978 Sep;78(3):943–950. doi: 10.1083/jcb.78.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cambiaso C. L., Goffinet A., Vaerman J. P., Heremans J. F. Glutaraldehyde-activated aminohexyl- derivative of Sepharose 4B as a new verstile immunoabsorbent. Immunochemistry. 1975 Apr;12(4):273–278. doi: 10.1016/0019-2791(75)90175-5. [DOI] [PubMed] [Google Scholar]
  8. Carbonetto S., Gruver M. M., Turner D. C. Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates. J Neurosci. 1983 Nov;3(11):2324–2335. doi: 10.1523/JNEUROSCI.03-11-02324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlson S. S., Kelly R. B. A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles. J Biol Chem. 1983 Sep 25;258(18):11082–11091. [PubMed] [Google Scholar]
  10. DeLorenzo R. J., Freedman S. D. Calcium dependent neurotransmitter release and protein phosphorylation in synaptic vesicles. Biochem Biophys Res Commun. 1978 Jan 13;80(1):183–192. doi: 10.1016/0006-291x(78)91121-x. [DOI] [PubMed] [Google Scholar]
  11. Ebendal T. The relative roles of contact inhibition and contact guidance in orientation of axons extending on aligned collagen fibrils in vitro. Exp Cell Res. 1976 Mar 1;98(1):159–169. doi: 10.1016/0014-4827(76)90475-4. [DOI] [PubMed] [Google Scholar]
  12. Finne J., Krusius T., Margolis R. K., Margolis R. U. Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain. J Biol Chem. 1979 Oct 25;254(20):10295–10300. [PubMed] [Google Scholar]
  13. Geissler D., Martinek A., Margolis R. U., Margolis R. K., Skrivanek J. A., Ledeen R., König P., Winkler H. Composition and biogenesis of complex carbohydrates of ox adrenal chromaffin granules. Neuroscience. 1977;2(5):685–693. doi: 10.1016/0306-4522(77)90023-9. [DOI] [PubMed] [Google Scholar]
  14. Glimelius B., Norling B., Westermark B., Wasteson A. Composition and distribution of glycosaminoglycans in cultures of human normal and malignant glial cells. Biochem J. 1978 Jun 15;172(3):443–456. doi: 10.1042/bj1720443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiang W. L., Crockett C. P., Margolis R. K., Margolis R. U. Glycosaminoglycans and glycoproteins associated with microsomal subfractions of brain and liver. Biochemistry. 1978 Sep 5;17(18):3841–3848. doi: 10.1021/bi00611a025. [DOI] [PubMed] [Google Scholar]
  16. Kiang W. L., Krusius T., Finne J., Margolis R. U., Margolis R. K. Glycoproteins and proteoglycans of the chromaffin granule matrix. J Biol Chem. 1982 Feb 25;257(4):1651–1659. [PubMed] [Google Scholar]
  17. Kiang W. L., Margolis R. U., Margolis R. K. Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain. J Biol Chem. 1981 Oct 25;256(20):10529–10537. [PubMed] [Google Scholar]
  18. Laurie G. W., Leblond C. P., Martin G. R. Light microscopic immunolocalization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basement membranes of a variety of rat organs. Am J Anat. 1983 May;167(1):71–82. doi: 10.1002/aja.1001670107. [DOI] [PubMed] [Google Scholar]
  19. Laurie G. W., Leblond C. P., Martin G. R., Silver M. H. Intracellular localization of basement membrane precursors in the endodermal cells of the rat parietal yolk sac. III. Immunostaining for laminin and its precursors. J Histochem Cytochem. 1982 Oct;30(10):991–998. doi: 10.1177/30.10.6752265. [DOI] [PubMed] [Google Scholar]
  20. Margolis R. K., Crockett C. P., Kiang W. L., Margolis R. U. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta. 1976 Dec 21;451(2):465–469. doi: 10.1016/0304-4165(76)90141-0. [DOI] [PubMed] [Google Scholar]
  21. Margolis R. K., Margolis R. U., Preti C., Lai D. Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain. Biochemistry. 1975 Nov 4;14(22):4797–4804. doi: 10.1021/bi00693a004. [DOI] [PubMed] [Google Scholar]
  22. Margolis R. K., Thomas M. D., Crockett C. P., Margolis R. U. Presence of chondroitin sulfate in the neuronal cytoplasm. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1711–1715. doi: 10.1073/pnas.76.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Margolis R. U., Margolis R. K. Distribution and metabolism of mucopolysaccharides and glycoproteins in neuronal perikarya, astrocytes, and oligodendroglia. Biochemistry. 1974 Jul 2;13(14):2849–2852. doi: 10.1021/bi00711a011. [DOI] [PubMed] [Google Scholar]
  24. Margolis R. U., Margolis R. K. Isolation of chondroitin sulfate and glycopeptides from chromaffin granules of adrenal medulla. Biochem Pharmacol. 1973 Sep 1;22(17):2195–2197. doi: 10.1016/0006-2952(73)90118-4. [DOI] [PubMed] [Google Scholar]
  25. Matthieu J. M., Quarles R. H., Poduslo J. F., Brady R. O. [35-S]sulfate incorporation into myelin glycoproteinsmi=entral nervous system. Biochim Biophys Acta. 1975 May 5;392(1):159–166. doi: 10.1016/0304-4165(75)90176-2. [DOI] [PubMed] [Google Scholar]
  26. Norling B., Glimelius B., Westermark B., Wasteson A. A chondroitin sulphate proteoglycan from human cultured glial cells aggregates with hyaluronic acid. Biochem Biophys Res Commun. 1978 Oct 30;84(4):914–921. doi: 10.1016/0006-291x(78)91670-4. [DOI] [PubMed] [Google Scholar]
  27. Pease D. C. Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J Ultrastruct Res. 1966 Aug;15(5):555–588. doi: 10.1016/s0022-5320(66)80128-4. [DOI] [PubMed] [Google Scholar]
  28. Pontén J., Westermark B. Properties of human malignant glioma cells in vitro. Med Biol. 1978 Aug;56(4):184–193. [PubMed] [Google Scholar]
  29. Poole A. R., Pidoux I., Reiner A., Cöster L., Hassell J. R. Mammalian eyes and associated tissues contain molecules that are immunologically related to cartilage proteoglycan and link protein. J Cell Biol. 1982 Jun;93(3):910–920. doi: 10.1083/jcb.93.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poole A. R., Pidoux I., Reiner A., Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol. 1982 Jun;93(3):921–937. doi: 10.1083/jcb.93.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Poole A. R., Pidoux I., Reiner A., Tang L. H., Choi H., Rosenberg L. Localization of proteoglycan monomer and link protein in the matrix of bovine articular cartilage: An immunohistochemical study. J Histochem Cytochem. 1980 Jul;28(7):621–635. doi: 10.1177/28.7.6156200. [DOI] [PubMed] [Google Scholar]
  32. Seligman A. M., Wasserkrug H. L., Deb C., Hanker J. S. Osmium-containing compounds with multiple basic or acidic groups as stains for ultrastructure. J Histochem Cytochem. 1968 Feb;16(2):87–101. doi: 10.1177/16.2.87. [DOI] [PubMed] [Google Scholar]
  33. Simpson D. L., Thorne D. R., Loch H. H. Sulfated glycoproteins, glycolipids, and glycosaminoglycans from synaptic plasma and myelin membranes: isolation and characterization of sulfated glycopeptides. Biochemistry. 1976 Dec 14;15(25):5449–5457. doi: 10.1021/bi00670a005. [DOI] [PubMed] [Google Scholar]
  34. Stadler H., Dowe G. H. Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata. EMBO J. 1982;1(11):1381–1384. doi: 10.1002/j.1460-2075.1982.tb01326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tani E., Ametani T. Extracellular distribution of ruthenium red-positive substance in the cerebral cortex. J Ultrastruct Res. 1971 Jan;34(1):1–14. doi: 10.1016/s0022-5320(71)90002-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES