Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):971–983. doi: 10.1083/jcb.99.3.971

Amplification of sodium- and potassium-activated adenosinetriphosphatase in HeLa cells by ouabain step selection

PMCID: PMC2113421  PMID: 6088560

Abstract

A multistep selection for ouabain resistance was used to isolate a clone of HeLa S3 cells that overproduces the plasma membrane sodium, potassium activated adenosinetriphosphatase (Na+,K+-ATPase). Measurements of specific [3H]ouabain-binding to the resistant clone, C+, and parental HeLa cells indicated that C+ cells contain 8-10 X 10(6) ouabain binding sites per cell compared with 8 X 10(5) per HeLa cell. Plasma membranes isolated from C+ cells by a vesiculation procedure and analyzed for ouabain-dependent incorporation of [32P]phosphate into a 100,000-mol-wt peptide demonstrated a ten- to twelvefold increase in Na+,K+-ATPase catalytic subunit. The affinity of the enzyme for ouabain on the C+ cells was reduced and the time for half maximal ouabain binding was increased compared with the values for the parental cells. The population doubling time for cultures of C+ cells grown in dishes was increased and C+ cells were unable to grow in suspension. Growth of C+ cells in ouabain-free medium resulted in revertant cells, C-, with biochemical and growth properties identical with HeLa. Karyotype analysis revealed that the ouabain-resistant phenotype of the C+ cells was associated with the presence of minute chromosomes which are absent in HeLa and C- cells. This suggests that a gene amplification event is responsible for the Na+,K+-ATPase increase in C+ cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978 Mar 10;253(5):1357–1370. [PubMed] [Google Scholar]
  2. Amory A., Foury F., Goffeau A. The purified plasma membrane ATPase of the yeast Schizosaccharomyces pombe forms a phosphorylated intermediate. J Biol Chem. 1980 Oct 10;255(19):9353–9357. [PubMed] [Google Scholar]
  3. Bloom S. E., Goodpasture C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet. 1976 Oct 28;34(2):199–206. doi: 10.1007/BF00278889. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Carpenter G., King L., Jr, Cohen S. Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. J Biol Chem. 1979 Jun 10;254(11):4884–4891. [PubMed] [Google Scholar]
  6. Cohen S., Ushiro H., Stoscheck C., Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem. 1982 Feb 10;257(3):1523–1531. [PubMed] [Google Scholar]
  7. Cook J. S., Vaughan G. L., Proctor W. R., Brake E. T. Interaction of two mechanisms regulating alkali cations in HeLa cells. J Cell Physiol. 1975 Aug;86(1):59–70. doi: 10.1002/jcp.1040860108. [DOI] [PubMed] [Google Scholar]
  8. Cowell J. K. Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet. 1982;16:21–59. doi: 10.1146/annurev.ge.16.120182.000321. [DOI] [PubMed] [Google Scholar]
  9. Craig W. S. Determination of the distribution of sodium and potassium ion activated adenosinetriphosphatase among the various oligomers formed in solutions of nonionic detergents. Biochemistry. 1982 May 25;21(11):2667–2674. doi: 10.1021/bi00540a014. [DOI] [PubMed] [Google Scholar]
  10. Fabricant R. N., De Larco J. E., Todaro G. J. Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A. 1977 Feb;74(2):565–569. doi: 10.1073/pnas.74.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Francke U., Hammond D. S., Schneider J. A. The band patterns of twelve D 98-AH-2 marker chromosomes and their use for identification of intraspecific cell hybrids. Chromosoma. 1973;41(1):111–121. doi: 10.1007/BF00284079. [DOI] [PubMed] [Google Scholar]
  12. George D. L., Powers V. E. Cloning of DNA from double minutes of Y1 mouse adrenocortical tumor cells: evidence for gene amplification. Cell. 1981 Apr;24(1):117–123. doi: 10.1016/0092-8674(81)90507-9. [DOI] [PubMed] [Google Scholar]
  13. HAKALA M. T., ZAKRZEWSKI S. F., NICHOL C. A. Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J Biol Chem. 1961 Mar;236:952–958. [PubMed] [Google Scholar]
  14. Haber D. A., Schimke R. T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell. 1981 Nov;26(3 Pt 1):355–362. doi: 10.1016/0092-8674(81)90204-x. [DOI] [PubMed] [Google Scholar]
  15. Haigler H. T., McKanna J. A., Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol. 1979 May;81(2):382–395. doi: 10.1083/jcb.81.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haigler H., Ash J. F., Singer S. J., Cohen S. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3317–3321. doi: 10.1073/pnas.75.7.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  18. Helenius A., McCaslin D. R., Fries E., Tanford C. Properties of detergents. Methods Enzymol. 1979;56:734–749. doi: 10.1016/0076-6879(79)56066-2. [DOI] [PubMed] [Google Scholar]
  19. Hiatt A., McDonough A. A., Edelman I. S. Assembly of the (Na+ + K+)-adenosine triphosphatase. Post-translational membrane integration of the alpha subunit. J Biol Chem. 1984 Feb 25;259(4):2629–2635. [PubMed] [Google Scholar]
  20. Huet C., Ash J. F., Singer S. J. The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts. Cell. 1980 Sep;21(2):429–438. doi: 10.1016/0092-8674(80)90479-1. [DOI] [PubMed] [Google Scholar]
  21. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  22. Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature. 1981 Jul 16;292(5820):201–204. doi: 10.1038/292201a0. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Ling V. Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol. 1975 Dec;17(4):503–515. doi: 10.1139/g75-064. [DOI] [PubMed] [Google Scholar]
  26. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  27. Lo C. S., Edelman I. S. Effect of triiodothyronine on the synthesis and degradation of renal cortical (Na+ + k+)-adenosine triphosphatase. J Biol Chem. 1976 Dec 25;251(24):7834–7840. [PubMed] [Google Scholar]
  28. Martinez A. O., Norwood T. H., Prothero J. W., Martin G. M. Evidence for clonal attenuation of growth potential in HeLa cells. In Vitro. 1978 Dec;14(12):996–1002. doi: 10.1007/BF02616213. [DOI] [PubMed] [Google Scholar]
  29. Meyers M. B., Biedler J. L. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem Biophys Res Commun. 1981 Mar 16;99(1):228–235. doi: 10.1016/0006-291x(81)91736-8. [DOI] [PubMed] [Google Scholar]
  30. Munson K. B. Light-dependent inactivation of (Na+ + K+)-ATPase with a new photoaffinity reagent, chromium arylazido-beta-alanyl ATP. J Biol Chem. 1981 Apr 10;256(7):3223–3230. [PubMed] [Google Scholar]
  31. Nelson-Rees W. A., Flandermeyer R. R., Daniels D. W. T-1 cells are HeLa and not of normal human kidney origin. Science. 1980 Aug 8;209(4457):719–720. doi: 10.1126/science.7394535. [DOI] [PubMed] [Google Scholar]
  32. Nelson-Rees W. A., Hunter L., Darlington G. J., O'Brien S. J. Characteristics of HeLa strains: permanent vs. variable features. Cytogenet Cell Genet. 1980;27(4):216–231. doi: 10.1159/000131490. [DOI] [PubMed] [Google Scholar]
  33. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pollack L. R., Tate E. H., Cook J. S. Na+, K+-ATPase in HeLa cells after prolonged growth in low K+ or ouabain. J Cell Physiol. 1981 Jan;106(1):85–97. doi: 10.1002/jcp.1041060110. [DOI] [PubMed] [Google Scholar]
  35. Rasheed S., Nelson-Rees W. A., Toth E. M., Arnstein P., Gardner M. B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974 Apr;33(4):1027–1033. doi: 10.1002/1097-0142(197404)33:4<1027::aid-cncr2820330419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  36. Resh M. D. Quantitation and characterization of the (Na+,K+)-adenosine triphosphatase in the rat adipocyte plasma membrane. J Biol Chem. 1982 Oct 25;257(20):11946–11952. [PubMed] [Google Scholar]
  37. Sabatini D., Colman D., Sabban E., Sherman J., Morimoto T., Kreibich G., Adesnik M. Mechanisms for the incorporation of proteins into the plasma membrane. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):807–818. doi: 10.1101/sqb.1982.046.01.076. [DOI] [PubMed] [Google Scholar]
  38. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  39. Sen A. K., Tobin T. A cycle for ouabain inhibition of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1969 Dec 25;244(24):6596–6604. [PubMed] [Google Scholar]
  40. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  41. Wallick E. T., Lindenmayer G. E., Lane L. K., Allen J. C., Pitts B. J., Schwartz A. Recent advances in cardiac glycoside-Na+,K+-ATPase interaction. Fed Proc. 1977 Aug;36(9):2214–2218. [PubMed] [Google Scholar]
  42. Wolman S. R., Craven M. L., Grill S. P., Domin B. A., Cheng Y. C. Quantitative correlation of homogeneously stained regions on chromosome 10 with dihydrofolate reductase enzyme in human cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):807–809. doi: 10.1073/pnas.80.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wright J. A., Lewis W. H., Parfett C. L. Somatic cell genetics: a review of drug resistance, lectin resistance and gene transfer in mammalian cells in culture. Can J Genet Cytol. 1980;22(4):443–496. doi: 10.1139/g80-056. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES