Abstract
The acrosome is a large secretory vesicle of the sperm head that carries enzymes responsible for the digestion of the oocyte's investments. The event leads to sperm penetration and allows fertilization to occur. Release of the acrosomal enzymes is mediated by the interaction between sperm acrosomal and plasma membranes (acrosome reaction). Biochemical characterization of the acrosomal membrane has been restrained by a lack of methods to isolate uncontaminated fractions of the membrane. Here, we use new methods to expose the membrane to in situ cytochemical labeling by lectin-gold complexes. We study the topology and relative density of glycoconjugates both across and along the plane of the acrosomal membrane of boar sperm. Detachment of the plasma membrane from glutaraldehyde-fixed cells exposed the cytoplasmic surface of the acrosome to the lectin markers; freeze- fractured halves of the acrosomal membrane were marked by "fracture- label" (Aguas, A. P., and P. Pinto da Silva, 1983, J. Cell Biol. 97:1356-1364). We show that the cytoplasmic surface of the intact acrosome is devoid of binding sites for both concanavalin A (Con A) and wheat germ agglutinin (WGA). By contrast, it contains a high density of neuraminidase-resistant anionic sites detected by cationic ferritin. On freeze-fractured sperm, the receptors for Con A partitioned with the exoplasmic membrane half of the acrosomal membrane. The Con A-binding glycoconjugates were accumulated on the equatorial segment of the membrane. A low density of WGA receptors, as well as of intramembrane particles, was found on the freeze-fracture halves of the acrosomal membrane. The plasma membrane displayed, in the same preparations, a high density of receptors for both Con A and WGA. We conclude that the acrosome is limited by a membrane poor in glycoconjugates, which are exclusively exposed on the exoplasmic side of the bilayer. Regionalization of Con A receptors on the acrosome shows that sperm intracellular membranes, like the sperm surface, express domain distribution of glycocomponents.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman G. A. Distribution of wheat germ agglutinin binding sites on normal human and guinea pig bone marrow cells: an ultrastructural histochemical study. Anat Rec. 1979 Dec;195(4):641–657. doi: 10.1002/ar.1091950406. [DOI] [PubMed] [Google Scholar]
- Aguas A. P., Pinto da Silva P. High density of transmembrane glycoproteins on the flagellar surface of boar sperm cells. J Cell Biol. 1984 Aug;99(2):655–660. doi: 10.1083/jcb.99.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguas A. P., Pinto da Silva P. Regionalization of transmembrane glycoproteins in the plasma membrane of boar sperm head is revealed by fracture-label. J Cell Biol. 1983 Nov;97(5 Pt 1):1356–1364. doi: 10.1083/jcb.97.5.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allison A. C., Hartree E. F. Lysosomal enzymes in the acrosome and their possible role in fertilization. J Reprod Fertil. 1970 Apr;21(3):501–515. doi: 10.1530/jrf.0.0210501. [DOI] [PubMed] [Google Scholar]
- Barbosa M. L., Pinto da Silva P. Restriction of glycolipids to the outer half of a plasma membrane: concanavalin A labeling of membrane halves in Acanthamoeba castellanii. Cell. 1983 Jul;33(3):959–966. doi: 10.1016/0092-8674(83)90039-9. [DOI] [PubMed] [Google Scholar]
- Bennett G., Kan F. W., O'Shaughnessy D. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. II. Observations in tissues other than liver. J Cell Biol. 1981 Jan;88(1):16–28. doi: 10.1083/jcb.88.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergmann J. E., Tokuyasu K. T., Singer S. J. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1746–1750. doi: 10.1073/pnas.78.3.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
- Dott H. M., Dingle J. T. Distribution of lysosomal enzymes in the spermatozoa and cytoplasmic droplets of bull and ram. Exp Cell Res. 1968 Oct;52(2):523–540. doi: 10.1016/0014-4827(68)90493-x. [DOI] [PubMed] [Google Scholar]
- Fawcett D. W. A comparative view of sperm ultrastructure. Biol Reprod Suppl. 1970;2:90–127. [PubMed] [Google Scholar]
- Friend D. S., Orci L., Perrelet A., Yanagimachi R. Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa. J Cell Biol. 1977 Aug;74(2):561–577. doi: 10.1083/jcb.74.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend D. S., Rudolf I. Acrosomal disruption in sperm. Freeze-fracture of altered membranes. J Cell Biol. 1974 Nov;63(2 Pt 1):466–479. doi: 10.1083/jcb.63.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
- Geuze H. J., Slot J. W., van der Ley P. A., Scheffer R. C. Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol. 1981 Jun;89(3):653–665. doi: 10.1083/jcb.89.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldfischer S., Kress Y., Coltoff-Schiller B., Berman J. Primary fixation in osmium-potassium ferrocyanide: the staining of glycogen, glycoproteins, elastin, an intranuclear reticular structure, and intercisternal trabeculae. J Histochem Cytochem. 1981 Sep;29(9):1105–1111. doi: 10.1177/29.9.6169760. [DOI] [PubMed] [Google Scholar]
- Goodpasture J. C., Reddy J. M., Zaneveld L. J. Acrosin, proacrosin, and acrosin inhibitor of guinea pig spermatozoa capacitated and acrosome-reacted in vitro. Biol Reprod. 1981 Aug;25(1):44–55. doi: 10.1095/biolreprod25.1.44. [DOI] [PubMed] [Google Scholar]
- Griffiths G., Warren G., Stuhlfauth I., Jockusch B. M. The role of clathrin-coated vesicles in acrosome formation. Eur J Cell Biol. 1981 Dec;26(1):52–60. [PubMed] [Google Scholar]
- Hartree E. F. The Eleventh CIBA Medal Lecture: Spermatazoa, eggs and proteinases. Biochem Soc Trans. 1977;5(2):375–394. doi: 10.1042/bst0050375. [DOI] [PubMed] [Google Scholar]
- Holt W. V. Membrane heterogeneity in the mammalian spermatozoon. Int Rev Cytol. 1984;87:159–194. doi: 10.1016/s0074-7696(08)62442-0. [DOI] [PubMed] [Google Scholar]
- Horisberger M., Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem. 1977 Apr;25(4):295–305. doi: 10.1177/25.4.323352. [DOI] [PubMed] [Google Scholar]
- Johnson L. A., Garner D. L., Truitt-Gilbert A. J., Lessley B. A. Immunocytochemical localization of acrosin on both acrosomal membranes and in the acrosomal matrix of porcine spermatozoa. J Androl. 1983 May-Jun;4(3):222–229. doi: 10.1002/j.1939-4640.1983.tb00760.x. [DOI] [PubMed] [Google Scholar]
- Kinsey W. H., Koehler J. K. Fine structural localization of Concanavalin A binding sites on hamster spermatozoa. J Supramol Struct. 1976;5(2):185–198. doi: 10.1002/jss.400050207. [DOI] [PubMed] [Google Scholar]
- Korn E. D., Wright P. L. Macromolecular composition of an amoeba plasma membrane. J Biol Chem. 1973 Jan 25;248(2):439–447. [PubMed] [Google Scholar]
- Neiss W. F. Electron staining of the cell surface coat by osmium-low ferrocyanide. Histochemistry. 1984;80(3):231–242. doi: 10.1007/BF00495771. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Pelletier R. M., Friend D. S. Development of membrane differentiations in the guinea pig spermatid during spermiogenesis. Am J Anat. 1983 May;167(1):119–141. doi: 10.1002/aja.1001670110. [DOI] [PubMed] [Google Scholar]
- Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
- Phillips D. M. Substructure of the mammalian acrosome. J Ultrastruct Res. 1972 Mar;38(5):591–604. doi: 10.1016/0022-5320(72)90092-5. [DOI] [PubMed] [Google Scholar]
- Pinto da Silva P., Parkison C., Dwyer N. Fracture-label:O cytochemistry of freeze-fracture faces in the erythrocyte membrane. Proc Natl Acad Sci U S A. 1981 Jan;78(1):343–347. doi: 10.1073/pnas.78.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Torrisi M. R., Kachar B. Freeze-fracture cytochemistry: localization of wheat-germ agglutinin and concanavalin A binding sites on freeze-fractured pancreatic cells. J Cell Biol. 1981 Nov;91(2 Pt 1):361–372. doi: 10.1083/jcb.91.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. D. Membrane structure. J Cell Biol. 1981 Dec;91(3 Pt 2):189s–204s. doi: 10.1083/jcb.91.3.189s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
- Russell L., Peterson R., Freund M. Direct evidence for formation of hybrid vesicles by fusion of plasma and outer acrosomal membranes during the acrosome reaction in boar spermatozoa. J Exp Zool. 1979 Apr;208(1):41–56. doi: 10.1002/jez.1402080106. [DOI] [PubMed] [Google Scholar]
- SRIVASTAVA P. N., ADAMS C. E., HARTREE E. F. ENZYMIC ACTION OF ACROSOMAL PREPARATIONS ON THE RABBIT OVUM IN VITRO. J Reprod Fertil. 1965 Aug;10:61–67. doi: 10.1530/jrf.0.0100061. [DOI] [PubMed] [Google Scholar]
- Shapiro B. M., Eddy E. M. When sperm meets egg: biochemical mechanisms of gamete interaction. Int Rev Cytol. 1980;66:257–302. doi: 10.1016/s0074-7696(08)61976-2. [DOI] [PubMed] [Google Scholar]
- Sleytr U. B., Umrath W. A simple fracturing device for obtaining complementary replicas of freeze-fractured and freeze-etched suspensions and tissue fragments. J Microsc. 1974 Jul;101(Pt 2):177–186. doi: 10.1111/j.1365-2818.1974.tb03880.x. [DOI] [PubMed] [Google Scholar]
- Susi F. R., Leblond C. P., Clermont Y. Changes in the golgi apparatus during spermiogenesis in the rat. Am J Anat. 1971 Mar;130(3):251–267. doi: 10.1002/aja.1001300302. [DOI] [PubMed] [Google Scholar]
- Tartakoff A. M., Vassalli P. Lectin-binding sites as markers of Golgi subcompartments: proximal-to-distal maturation of oligosaccharides. J Cell Biol. 1983 Oct;97(4):1243–1248. doi: 10.1083/jcb.97.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torrisi M. R., Pinto da Silva P. Compartmentalization of intracellular membrane glycocomponents is revealed by fracture-label. J Cell Biol. 1984 Jan;98(1):29–34. doi: 10.1083/jcb.98.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. A. Autoradiography: its methodology at the present time. J Microsc. 1982 Oct;128(Pt 1):79–94. doi: 10.1111/j.1365-2818.1982.tb00439.x. [DOI] [PubMed] [Google Scholar]
- Yanagimachi R., Noda Y. D. Ultrastructural changes in the hamster sperm head during fertilization. J Ultrastruct Res. 1970 Jun;31(5-6):465–485. doi: 10.1016/s0022-5320(70)90163-2. [DOI] [PubMed] [Google Scholar]
- da Silva P. P., Kachar B., Torrisi M. R., Brown C., Parkison C. Freeze-fracture cytochemistry: replicas of critical point-dried cells and tissues after fracture-label. Science. 1981 Jul 10;213(4504):230–233. doi: 10.1126/science.7244630. [DOI] [PubMed] [Google Scholar]
- da Silva P. P., Parkison C., Dwyer N. Freeze-fracture cytochemistry: thin sections of cells and tissues after labeling of fractures faces. J Histochem Cytochem. 1981 Aug;29(8):917–928. doi: 10.1177/29.8.7276536. [DOI] [PubMed] [Google Scholar]
- da Silva P. P., Torrisi M. R. Freeze-fracture cytochemistry: partition of glycophorin in freeze-fractured human erythrocyte membranes. J Cell Biol. 1982 May;93(2):463–469. doi: 10.1083/jcb.93.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]