Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Feb 1;100(2):442–456. doi: 10.1083/jcb.100.2.442

Initial appearance and regional distribution of the neuron-glia cell adhesion molecule in the chick embryo

PMCID: PMC2113447  PMID: 3881458

Abstract

This study represents a global survey of the times of the first appearance of the neuron-glia cell adhesion molecule (Ng-CAM) in various regions and on particular cells of the chick embryonic nervous system. Ng-CAM, originally characterized by means of an in vitro binding assay between glial cells and brain membrane vesicles, first appears in development at the surface of early postmitotic neurons. By 3 d in the chick embryo, the first neurons detected by antibodies to Ng- CAM are located in the ventral neural tube; these precursors of motor neurons emit well-stained fibers to the periphery. To identify locations of appearance of Ng-CAM in the peripheral nervous system (PNS), we used a monoclonal antibody called NC-1 that is specific for neural crest cells in early embryos to show the presence of numerous crest cells in the neuritic outgrowth from the neural tube; neither these crest cells nor those in ganglion rudiments bound anti-Ng-CAM antibodies. The earliest neurons in the PNS stained by anti-Ng-CAM appeared by 4 d of development in the cranial ganglia. At later stages and progressively, all the neurons and neurities of the PNS were found to contain Ng-CAM both in vitro and in vivo. Many central nervous system (CNS) neurons also showed Ng-CAM at these later stages, but in the CNS, the molecule was mostly associated with neuronal processes (mainly axons) rather than with cell bodies; this regional distribution at the neuronal cell surface is an example of polarity modulation. In contrast to the neural cell adhesion molecule and the liver cell adhesion molecule, both of which are found very early in derivatives of more than one germ layer, Ng-CAM is expressed only on neurons of the CNS and the PNS during the later epoch of development concerned with neural histogenesis. Ng-CAM is thus a specific differentiation product of neuroectoderm. Ng-CAM was found on developing neurons at approximately the same time that neurofilaments first appear, times at which glial cells are still undergoing differentiation from neuroepithelial precursors. The present findings and those of previous studies suggest that together the neural cell adhesion molecule and Ng- CAM mediate specific cellular interactions during the formation of neuronal networks by means of modulation events that govern their prevalence and polarity on neuronal cell surfaces.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan I. J., Newgreen D. F. Catecholamine accumulation in neural crest cells and the primary sympathetic chain. Am J Anat. 1977 Jul;149(3):413–421. doi: 10.1002/aja.1001490306. [DOI] [PubMed] [Google Scholar]
  2. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  3. Bray G. M., Rasminsky M., Aguayo A. J. Interactions between axons and their sheath cells. Annu Rev Neurosci. 1981;4:127–162. doi: 10.1146/annurev.ne.04.030181.001015. [DOI] [PubMed] [Google Scholar]
  4. Buskirk D. R., Thiery J. P., Rutishauser U., Edelman G. M. Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae. Nature. 1980 Jun 12;285(5765):488–489. doi: 10.1038/285488a0. [DOI] [PubMed] [Google Scholar]
  5. Carr V. M., Simpson S. B., Jr Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. J Comp Neurol. 1978 Dec 15;182(4):727–739. doi: 10.1002/cne.901820410. [DOI] [PubMed] [Google Scholar]
  6. Chuong C. M., Edelman G. M. Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci. 1984 Sep;4(9):2354–2368. doi: 10.1523/JNEUROSCI.04-09-02354.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cochard P., Goldstein M., Black I. B. Initial development of the noradrenergic phenotype in autonomic neuroblasts of the rat embryo in vivo. Dev Biol. 1979 Jul;71(1):100–114. doi: 10.1016/0012-1606(79)90085-x. [DOI] [PubMed] [Google Scholar]
  8. Cochard P., Paulin D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci. 1984 Aug;4(8):2080–2094. doi: 10.1523/JNEUROSCI.04-08-02080.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham B. A., Hoffman S., Rutishauser U., Hemperly J. J., Edelman G. M. Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. Proc Natl Acad Sci U S A. 1983 May;80(10):3116–3120. doi: 10.1073/pnas.80.10.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Amico-Martel A., Noden D. M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983 Apr;166(4):445–468. doi: 10.1002/aja.1001660406. [DOI] [PubMed] [Google Scholar]
  11. D'Amico-Martel A. Temporal patterns of neurogenesis in avian cranial sensory and autonomic ganglia. Am J Anat. 1982 Apr;163(4):351–372. doi: 10.1002/aja.1001630407. [DOI] [PubMed] [Google Scholar]
  12. Denis-Donini S., Glowinski J., Prochiantz A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature. 1984 Feb 16;307(5952):641–643. doi: 10.1038/307641a0. [DOI] [PubMed] [Google Scholar]
  13. Duband J. L., Thiery J. P. Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol. 1982 Oct;93(2):308–323. doi: 10.1016/0012-1606(82)90120-8. [DOI] [PubMed] [Google Scholar]
  14. ENEMAR A., FALCK B. OBSERVATIONS ON THE APPEARANCE OF NOREPINEPHRINE IN THE SYMPATHETIC NERVOUS SYSTEM OF THE CHICK EMBRYO. Dev Biol. 1965 Apr;11:268–283. doi: 10.1016/0012-1606(65)90060-6. [DOI] [PubMed] [Google Scholar]
  15. Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  16. Edelman G. M., Chuong C. M. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. doi: 10.1073/pnas.79.22.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Edelman G. M., Gallin W. J., Delouvée A., Cunningham B. A., Thiery J. P. Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4384–4388. doi: 10.1073/pnas.80.14.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edelman G. M. Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annu Rev Neurosci. 1984;7:339–377. doi: 10.1146/annurev.ne.07.030184.002011. [DOI] [PubMed] [Google Scholar]
  19. Fontaine-Perus J., Chanconie M., Polak J. M., Le Douarin N. M. Origin and development of VIP and substance P containing neurons in the embryonic avian gut. Histochemistry. 1981;71(3):313–323. doi: 10.1007/BF00495878. [DOI] [PubMed] [Google Scholar]
  20. Fraser S. E., Murray B. A., Chuong C. M., Edelman G. M. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4222–4226. doi: 10.1073/pnas.81.13.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gallin W. J., Edelman G. M., Cunningham B. A. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1038–1042. doi: 10.1073/pnas.80.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grumet M., Edelman G. M. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule. J Cell Biol. 1984 May;98(5):1746–1756. doi: 10.1083/jcb.98.5.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grumet M., Hoffman S., Chuong C. M., Edelman G. M. Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7989–7993. doi: 10.1073/pnas.81.24.7989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grumet M., Hoffman S., Edelman G. M. Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc Natl Acad Sci U S A. 1984 Jan;81(1):267–271. doi: 10.1073/pnas.81.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grumet M., Rutishauser U., Edelman G. M. Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro. Nature. 1982 Feb 25;295(5851):693–695. doi: 10.1038/295693a0. [DOI] [PubMed] [Google Scholar]
  26. Grumet M., Rutishauser U., Edelman G. M. Neuron-glia adhesion is inhibited by antibodies to neural determinants. Science. 1983 Oct 7;222(4619):60–62. doi: 10.1126/science.6194561. [DOI] [PubMed] [Google Scholar]
  27. HAMBURGER V., LEVI-MONTALCINI R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool. 1949 Aug;111(3):457–501. doi: 10.1002/jez.1401110308. [DOI] [PubMed] [Google Scholar]
  28. Hatten M. E., Liem R. K., Mason C. A. Two forms of cerebellar glial cells interact differently with neurons in vitro. J Cell Biol. 1984 Jan;98(1):193–204. doi: 10.1083/jcb.98.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
  31. Hollyday M., Hamburger V. An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res. 1977 Aug 26;132(2):197–208. doi: 10.1016/0006-8993(77)90416-4. [DOI] [PubMed] [Google Scholar]
  32. Holton B., Weston J. A. Analysis of glial cell differentiation in peripheral nervous tissue. I. S100 Accumulation in quail embryo spinal ganglion cultures. Dev Biol. 1982 Jan;89(1):64–71. doi: 10.1016/0012-1606(82)90294-9. [DOI] [PubMed] [Google Scholar]
  33. Holton B., Weston J. A. Analysis of glial cell differentiation in peripheral nervous tissue. II. Neurons promote S 100 synthesis by purified glial precursor cell populations. Dev Biol. 1982 Jan;89(1):72–81. doi: 10.1016/0012-1606(82)90295-0. [DOI] [PubMed] [Google Scholar]
  34. Jessen K. R., Mirsky R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980 Aug 14;286(5774):736–737. doi: 10.1038/286736a0. [DOI] [PubMed] [Google Scholar]
  35. Kahn A. J. An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev Biol. 1974 May;38(1):30–40. doi: 10.1016/0012-1606(74)90256-5. [DOI] [PubMed] [Google Scholar]
  36. LYSER K. M. EARLY DIFFERENTIATION OF MOTOR NEUROBLASTS IN THE CHICK EMBRYO AS STUDIED BY ELECTRON MICROSCOPY. I. GENERAL ASPECTS. Dev Biol. 1964 Dec;10:433–466. doi: 10.1016/0012-1606(64)90054-5. [DOI] [PubMed] [Google Scholar]
  37. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  38. Langman J., Haden C. C. Formation and migration of neuroblasts in the spinal cord of the chick embryo. J Comp Neurol. 1970 Apr;138(4):419–425. doi: 10.1002/cne.901380403. [DOI] [PubMed] [Google Scholar]
  39. Le Douarin N. M., Teillet M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973 Aug;30(1):31–48. [PubMed] [Google Scholar]
  40. Lindner J., Rathjen F. G., Schachner M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. 1983 Sep 29-Oct 5Nature. 305(5933):427–430. doi: 10.1038/305427a0. [DOI] [PubMed] [Google Scholar]
  41. Rothbard J. B., Brackenbury R., Cunningham B. A., Edelman G. M. Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J Biol Chem. 1982 Sep 25;257(18):11064–11069. [PubMed] [Google Scholar]
  42. Rutishauser U., Gall W. E., Edelman G. M. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol. 1978 Nov;79(2 Pt 1):382–393. doi: 10.1083/jcb.79.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rutishauser U., Hoffman S., Edelman G. M. Binding properties of a cell adhesion molecule from neural tissue. Proc Natl Acad Sci U S A. 1982 Jan;79(2):685–689. doi: 10.1073/pnas.79.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rutishauser U., Thiery J. P., Brackenbury R., Edelman G. M. Adhesion among neural cells of the chick embryo. III. Relationship of the surface molecule CAM to cell adhesion and the development of histotypic patterns. J Cell Biol. 1978 Nov;79(2 Pt 1):371–381. doi: 10.1083/jcb.79.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol. 1981 Aug;90(2):435–447. doi: 10.1083/jcb.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith J., Cochard P., Le Douarin N. M. Development of choline acetyltransferase and cholinesterase activities in enteric ganglia derives from presumptive adrenergic and cholinergic levels of the neural crest. Cell Differ. 1977 Oct;6(3-4):199–216. doi: 10.1016/0045-6039(77)90016-1. [DOI] [PubMed] [Google Scholar]
  47. Smith J., Fauquet M., Ziller C., Le Douarin N. M. Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Nature. 1979 Dec 20;282(5741):853–855. doi: 10.1038/282853a0. [DOI] [PubMed] [Google Scholar]
  48. Tapscott S. J., Bennett G. S., Holtzer H. Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature. 1981 Aug 27;292(5826):836–838. doi: 10.1038/292836a0. [DOI] [PubMed] [Google Scholar]
  49. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  50. Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]
  51. Thiery J. P., Delouvée A., Gallin W. J., Cunningham B. A., Edelman G. M. Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev Biol. 1984 Mar;102(1):61–78. doi: 10.1016/0012-1606(84)90175-1. [DOI] [PubMed] [Google Scholar]
  52. Thiery J. P., Duband J. L., Delouvée A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol. 1982 Oct;93(2):324–343. doi: 10.1016/0012-1606(82)90121-x. [DOI] [PubMed] [Google Scholar]
  53. Thiery J. P., Duband J. L., Rutishauser U., Edelman G. M. Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6737–6741. doi: 10.1073/pnas.79.21.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vincent M., Duband J. L., Thiery J. P. A cell surface determinant expressed early on migrating avian neural crest cells. Brain Res. 1983 Aug;285(2):235–238. doi: 10.1016/0165-3806(83)90058-5. [DOI] [PubMed] [Google Scholar]
  56. Vincent M., Thiery J. P. A cell surface marker for neural crest and placodal cells: further evolution in peripheral and central nervous system. Dev Biol. 1984 Jun;103(2):468–481. doi: 10.1016/0012-1606(84)90334-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES