Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Feb 1;100(2):598–605. doi: 10.1083/jcb.100.2.598

Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues

PMCID: PMC2113448  PMID: 2578471

Abstract

Monoclonal antibodies were produced against the recently described short chain cartilage collagen (type X collagen), and one (AC9) was extensively characterized and used for immunohistochemical localization studies on chick tissues. By competition enzyme-linked immunosorbent assay, antibody AC9 was observed to bind to an epitope within the helical domain of type X collagen and did not react with the other collagen types tested, including the minor cartilage collagens 1 alpha, 2 alpha, 3 alpha, and HMW-LMW. Indirect immunofluorescence analyses with this antibody were performed on unfixed cryostat sections from various skeletal and nonskeletal tissues. Only those of skeletal origin showed detectable reactivity. Within the cartilage portion of the 13-d- old embryonic tibiotarsus (a developing long bone) fluorescence was observed only in that region of the diaphysis containing hypertrophic chondrocytes. None was detectable in adjacent regions or in the epiphysis. Slight fluorescence was also present within the surrounding sleeve of periosteal bone. Consistent with these results, the antibody did not react with the cartilages of the trachea and sclera, which do not undergo hypertrophy during the stages examined. It did, however, lightly react with the parietal bones of the head, which form by intramembranous ossification. These results are consistent with our earlier biochemical analyses, which showed type X collagen to be a product of that subpopulation of chondrocytes that have undergone hypertrophy. In addition, either it or an immunologically cross- reactive molecule is also present in bone, and exhibits a diminished fluorescent intensity as compared with hypertrophic cartilage.

Full Text

The Full Text of this article is available as a PDF (985.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H. C. Electron microscopic studies of induced cartilage development and calcification. J Cell Biol. 1967 Oct;35(1):81–101. doi: 10.1083/jcb.35.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernard G. W., Pease D. C. An electron microscopic study of initial intramembranous osteogenesis. Am J Anat. 1969 Jul;125(3):271–290. doi: 10.1002/aja.1001250303. [DOI] [PubMed] [Google Scholar]
  3. Bonucci E. Fine structure of early cartilage calcification. J Ultrastruct Res. 1967 Sep;20(1):33–50. doi: 10.1016/s0022-5320(67)80034-0. [DOI] [PubMed] [Google Scholar]
  4. Bornstein P., Sage H. Structurally distinct collagen types. Annu Rev Biochem. 1980;49:957–1003. doi: 10.1146/annurev.bi.49.070180.004521. [DOI] [PubMed] [Google Scholar]
  5. Bruckner P., Prockop D. J. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem. 1981 Jan 15;110(2):360–368. doi: 10.1016/0003-2697(81)90204-9. [DOI] [PubMed] [Google Scholar]
  6. Burgeson R. E., Hollister D. W. Collagen heterogeneity in human cartilage: identification of several new collagen chains. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1124–1131. doi: 10.1016/s0006-291x(79)80024-8. [DOI] [PubMed] [Google Scholar]
  7. Duance V. C., Shimokomaki M., Bailey A. J. Immunofluorescence localization of type-M collagen in articular cartilage. Biosci Rep. 1982 Apr;2(4):223–227. doi: 10.1007/BF01136720. [DOI] [PubMed] [Google Scholar]
  8. Evans H. B., Ayad S., Abedin M. Z., Hopkins S., Morgan K., Walton K. W., Weiss J. B., Holt P. J. Localisation of collagen types and fibronectin in cartilage by immunofluorescence. Ann Rheum Dis. 1983 Oct;42(5):575–581. doi: 10.1136/ard.42.5.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fitch J. M., Gibney E., Sanderson R. D., Mayne R., Linsenmayer T. F. Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen. J Cell Biol. 1982 Nov;95(2 Pt 1):641–647. doi: 10.1083/jcb.95.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson G. J., Schor S. L., Grant M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J Cell Biol. 1982 Jun;93(3):767–774. doi: 10.1083/jcb.93.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gionti E., Capasso O., Cancedda R. The culture of chick embryo chondrocytes and the control of their differentiated functions in vitro. Transformation by rous sarcoma virus induces a switch in the collagen type synthesis and enhances fibronectin expression. J Biol Chem. 1983 Jun 10;258(11):7190–7194. [PubMed] [Google Scholar]
  12. Glaser J. H., Conrad H. E. Formation of matrix vesicles by cultured chick embryo chondrocytes. J Biol Chem. 1981 Dec 10;256(23):12607–12611. [PubMed] [Google Scholar]
  13. Hartmann D. J., Magloire H., Ricard-Blum S., Joffre A., Couble M. L., Ville G., Herbage D. Light and electron immunoperoxidase localization of minor disulfide-bonded collagens in fetal calf epiphyseal cartilage. Coll Relat Res. 1983 Jul;3(4):349–357. doi: 10.1016/s0174-173x(83)80016-8. [DOI] [PubMed] [Google Scholar]
  14. Kim J. J., Conrad H. E. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1977 Nov 25;252(22):8292–8299. [PubMed] [Google Scholar]
  15. Linsenmayer T. F., Fitch J. M., Schmid T. M., Zak N. B., Gibney E., Sanderson R. D., Mayne R. Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol. 1983 Jan;96(1):124–132. doi: 10.1083/jcb.96.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Linsenmayer T. F., Gibney E., Fitch J. M., Gross J., Mayne R. Thermal stability of the helical structure of type IV collagen within basement membranes in situ: determination with a conformation-dependent monoclonal antibody. J Cell Biol. 1984 Oct;99(4 Pt 1):1405–1409. doi: 10.1083/jcb.99.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Linsenmayer T. F., Hendrix M. J., Little C. D. Production and characterization of a monoclonal antibody to chicken type I collagen. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3703–3707. doi: 10.1073/pnas.76.8.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Linsenmayer T. F., Hendrix M. J. Monoclonal antibodies to connective tissue macromolecules: type II collagen. Biochem Biophys Res Commun. 1980 Jan 29;92(2):440–446. doi: 10.1016/0006-291x(80)90352-6. [DOI] [PubMed] [Google Scholar]
  19. Linsenmayer T. F. Temporal and spatial transitions in collagen types during embryonic chick limb development. II. Comparison of the embryonic cartilage collagen molecule with that from adult cartilage. Dev Biol. 1974 Oct;40(2):372–377. doi: 10.1016/0012-1606(74)90138-9. [DOI] [PubMed] [Google Scholar]
  20. Linsenmayer T. F., Toole B. P., Trelstad R. L. Temporal and spatial transitions in collagen types during embryonic chick limb development. Dev Biol. 1973 Dec;35(2):232–239. doi: 10.1016/0012-1606(73)90020-1. [DOI] [PubMed] [Google Scholar]
  21. Mayne R., Elrod B. W., Mayne P. M., Sanderson R. D., Linsenmayer T. F. Changes in the synthesis of minor cartilage collagens after growth of chick chondrocytes in 5-bromo-2'-deoxyuridine or to senescence. Exp Cell Res. 1984 Mar;151(1):171–182. doi: 10.1016/0014-4827(84)90366-5. [DOI] [PubMed] [Google Scholar]
  22. Miller E. J., Matukas V. J. Chick cartilage collagen: a new type of alpha 1 chain not present in bone or skin of the species. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1264–1268. doi: 10.1073/pnas.64.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Osdoby P., Caplan A. I. First bone formation in the developing chick limb. Dev Biol. 1981 Aug;86(1):147–156. doi: 10.1016/0012-1606(81)90325-0. [DOI] [PubMed] [Google Scholar]
  24. Reese C. A., Mayne R. Minor collagens of chicken hyaline cartilage. Biochemistry. 1981 Sep 15;20(19):5443–5448. doi: 10.1021/bi00522a014. [DOI] [PubMed] [Google Scholar]
  25. Remington M. C., Bashey R. I., Brighton C. T., Jimenez S. A. Biosynthesis of a low molecular weight collagen by rabbit growth plate cartilage organ cultures. Coll Relat Res. 1983 May;3(3):271–277. doi: 10.1016/s0174-173x(83)80009-0. [DOI] [PubMed] [Google Scholar]
  26. Rennard S. I., Berg R., Martin G. R., Foidart J. M., Robey P. G. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem. 1980 May 1;104(1):205–214. doi: 10.1016/0003-2697(80)90300-0. [DOI] [PubMed] [Google Scholar]
  27. Schmid T. M., Conrad H. E. A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J Biol Chem. 1982 Oct 25;257(20):12444–12450. [PubMed] [Google Scholar]
  28. Schmid T. M., Conrad H. E. Metabolism of low molecular weight collagen by chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1982 Oct 25;257(20):12451–12457. [PubMed] [Google Scholar]
  29. Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
  30. Schmid T. M., Linsenmayer T. F. Denaturation-renaturation properties of two molecular forms of short-chain cartilage collagen. Biochemistry. 1984 Jan 31;23(3):553–558. doi: 10.1021/bi00298a024. [DOI] [PubMed] [Google Scholar]
  31. Schmid T. M., Mayne R., Bruns R. R., Linsenmayer T. F. Molecular structure of short-chain (SC) cartilage collagen by electron microscopy. J Ultrastruct Res. 1984 Feb;86(2):186–191. doi: 10.1016/s0022-5320(84)80057-x. [DOI] [PubMed] [Google Scholar]
  32. Scott-Savage P., Hall B. K. The timing of the onset of osteogenesis in the tibia of the embryonic chick. J Morphol. 1979 Dec;162(3):453–463. doi: 10.1002/jmor.1051620310. [DOI] [PubMed] [Google Scholar]
  33. Stocum D. L., Davis R. M., Leger M., Conrad H. E. Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions. J Embryol Exp Morphol. 1979 Dec;54:155–170. [PubMed] [Google Scholar]
  34. Trelstad R. L., Kang A. H., Igarashi S., Gross J. Isolation of two distinct collagens from chick cartilage. Biochemistry. 1970 Dec 8;9(25):4993–4998. doi: 10.1021/bi00827a025. [DOI] [PubMed] [Google Scholar]
  35. von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]
  36. von der Mark K., von der Mark H., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluroescence. II. Localization of type I and type II collagen during long bone development. Dev Biol. 1976 Oct 15;53(2):153–170. doi: 10.1016/0012-1606(76)90220-7. [DOI] [PubMed] [Google Scholar]
  37. von der Mark K., von der Mark H. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br. 1977 Nov;59-B(4):458–464. doi: 10.1302/0301-620X.59B4.72756. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES