Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Jan 1;100(1):161–174. doi: 10.1083/jcb.100.1.161

Chronic denervation of rat hemidiaphragm: maintenance of fiber heterogeneity with associated increasing uniformity of myosin isoforms

PMCID: PMC2113461  PMID: 3965469

Abstract

During several months of denervation, rat mixed muscles lose slow myosin, though with variability among animals. Immunocytochemical studies showed that all the denervated fibers of the hemidiaphragm reacted with anti-fast myosin, while many reacted with anti-slow myosin as well. This has left open the question as to whether multiple forms of myosin co-exist within individual fibers or a unique, possibly embryonic, myosin is present, which shares epitopes with fast and slow myosins. Furthermore, one can ask if the reappearance of embryonic myosin in chronically denervated muscle is related both to its re- expression in the pre-existing fibers and to cell regeneration. To answer these questions we studied the myosin heavy chains from individual fibers of the denervated hemidiaphragm by SDS PAGE and morphologically searched for regenerative events in the long term denervated muscle. 3 mo after denervation the severely atrophic fibers of the hemidiaphragm showed either fast or a mixture of fast and slow myosin heavy chains. Structural analysis of proteins sequentially extracted from muscle cryostat sections showed that slow myosin was still present 16 mo after denervation, in spite of the loss of the selective distribution of fast and slow features. Therefore muscle fibers can express adult fast myosin not only when denervated during their differentiation but also after the slow program has been expressed for a long time. Light and electron microscopy showed that the long-term denervated muscle maintained a steady-state atrophy for the rat's life span. Some of the morphological features indicate that aneural regeneration events continuously occur and significantly contribute to the increasing uniformity of the myosin gene expression in long-term denervated diaphragm.

Full Text

The Full Text of this article is available as a PDF (7.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981 May-Jun;4(3):234–245. doi: 10.1002/mus.880040311. [DOI] [PubMed] [Google Scholar]
  2. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  3. Butler-Browne G. S., Bugaisky L. B., Cuénoud S., Schwartz K., Whalen R. G. Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature. 1982 Oct 28;299(5886):830–833. doi: 10.1038/299830a0. [DOI] [PubMed] [Google Scholar]
  4. Butler-Browne G. S., Herlicoviez D., Whalen R. G. Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett. 1984 Jan 23;166(1):71–75. doi: 10.1016/0014-5793(84)80047-2. [DOI] [PubMed] [Google Scholar]
  5. Cantini M., Sartore S., Schiaffino S. Myosin types in cultured muscle cells. J Cell Biol. 1980 Jun;85(3):903–909. doi: 10.1083/jcb.85.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caplan A. I., Fiszman M. Y., Eppenberger H. M. Molecular and cell isoforms during development. Science. 1983 Sep 2;221(4614):921–927. doi: 10.1126/science.6348946. [DOI] [PubMed] [Google Scholar]
  7. Carraro U., Catani C. A sensitive SDS-PAGE method separating myosin heavy chain isoforms of rat skeletal muscles reveals the heterogeneous nature of the embryonic myosin. Biochem Biophys Res Commun. 1983 Nov 15;116(3):793–802. doi: 10.1016/s0006-291x(83)80212-5. [DOI] [PubMed] [Google Scholar]
  8. Carraro U., Catani C., Biral D. Selective maintenance of neurotrophically regulated proteins in denervated rat diaphragm. Exp Neurol. 1979 Mar;63(3):468–475. doi: 10.1016/0014-4886(79)90165-1. [DOI] [PubMed] [Google Scholar]
  9. Carraro U., Catani C., Dalla Libera L. Myosin light and heavy chains in rat gastrocnemius and diaphragm muscles after chronic denervation or reinnervation. Exp Neurol. 1981 May;72(2):401–412. doi: 10.1016/0014-4886(81)90232-6. [DOI] [PubMed] [Google Scholar]
  10. Carraro U., Catani C., Dalla Libera L., Vascon M., Zanella G. Differential distribution of tropomyosin subunits in fast and slow rat muscles and its change in long-term denervated hemidiaphragm. FEBS Lett. 1981 Jun 15;128(2):233–236. doi: 10.1016/0014-5793(81)80088-9. [DOI] [PubMed] [Google Scholar]
  11. Carraro U., Dalla Libera L., Catani C., Danieli-Betto D. Chronic denervation of rat diaphragm: selective maintenance of adult fast myosin heavy chains. Muscle Nerve. 1982 Sep;5(7):515–524. doi: 10.1002/mus.880050706. [DOI] [PubMed] [Google Scholar]
  12. Carraro U., Dalla Libera L., Catani C. Myosin light and heavy chains in muscle regenerating in absence of the nerve: transient appearance of the embryonic light chain. Exp Neurol. 1983 Jan;79(1):106–117. doi: 10.1016/0014-4886(83)90382-5. [DOI] [PubMed] [Google Scholar]
  13. Carraro U., dalla Libera L., Catani C. Myosin light chains of avian and mammalian slow muscles: evidence of intraspecific polymorphism. J Muscle Res Cell Motil. 1981 Sep;2(3):335–342. doi: 10.1007/BF00713271. [DOI] [PubMed] [Google Scholar]
  14. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  15. Dhoot G. K., Perry S. V. Changes in the forms of the components of the troponin complex during regeneration of injured skeletal muscle. Muscle Nerve. 1982 Jan;5(1):39–47. doi: 10.1002/mus.880050108. [DOI] [PubMed] [Google Scholar]
  16. Feng T. P., Lu D. X. New lights on the phenomenon of transient hypertrophy in the denervated hemidiaphragm of the rat. Sci Sin. 1965 Dec;14(12):1772–1784. [PubMed] [Google Scholar]
  17. Gauthier G. F., Hobbs A. W. Effects of denervation on the distribution of myosin isozymes in skeletal muscle fibers. Exp Neurol. 1982 May;76(2):331–346. doi: 10.1016/0014-4886(82)90213-8. [DOI] [PubMed] [Google Scholar]
  18. Gauthier G. F., Lowey S. Distribution of myosin isoenzymes among skeletal muscle fiber types. J Cell Biol. 1979 Apr;81(1):10–25. doi: 10.1083/jcb.81.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gibson M. C., Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve. 1983 Oct;6(8):574–580. doi: 10.1002/mus.880060807. [DOI] [PubMed] [Google Scholar]
  20. Gulati A. K., Reddi A. H., Zalewski A. A. Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol. 1983 Oct;97(4):957–962. doi: 10.1083/jcb.97.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hall-Craggs E. C., Wines M. M., Max S. R. Fiber type changes in denervated soleus muscles of the hyperthyroid rat. Exp Neurol. 1983 Apr;80(1):252–257. doi: 10.1016/0014-4886(83)90021-3. [DOI] [PubMed] [Google Scholar]
  22. Heizmann C. W., Berchtold M. W., Rowlerson A. M. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7243–7247. doi: 10.1073/pnas.79.23.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ishiura S., Nonaka I., Sugita H., Mikawa T. Effect of denervation of neonatal rat sciatic nerve on the differentiation of myosin in a single muscle fiber. Exp Neurol. 1981 Aug;73(2):487–495. doi: 10.1016/0014-4886(81)90282-x. [DOI] [PubMed] [Google Scholar]
  24. Jolesz F., Sreter F. A. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531–552. doi: 10.1146/annurev.ph.43.030181.002531. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Margreth A., Dalla Libera L., Salviati G., Ischia N. Spinal transection and the postnatal differentiation of slow myosin isoenzymes. Muscle Nerve. 1980 Nov-Dec;3(6):483–486. doi: 10.1002/mus.880030604. [DOI] [PubMed] [Google Scholar]
  27. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  28. Miledi R., Slater C. R. Electron-microscopic structure of denervated skeletal muscle. Proc R Soc Lond B Biol Sci. 1969 Nov 18;174(1035):253–269. doi: 10.1098/rspb.1969.0091. [DOI] [PubMed] [Google Scholar]
  29. Muscatello U., Margreth A., Aloisi M. On the differential response of sarcoplasm and myoplasm to denervation in frog muscle. J Cell Biol. 1965 Oct;27(1):1–24. doi: 10.1083/jcb.27.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubinstein N. A., Kelly A. M. Development of muscle fiber specialization in the rat hindlimb. J Cell Biol. 1981 Jul;90(1):128–144. doi: 10.1083/jcb.90.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rubinstein N. A., Kelly A. M. Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat. Dev Biol. 1978 Feb;62(2):473–485. doi: 10.1016/0012-1606(78)90229-4. [DOI] [PubMed] [Google Scholar]
  32. Rushbrook J. I., Stracher A. Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4331–4334. doi: 10.1073/pnas.76.9.4331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
  34. Salviati G., Betto R., Danieli Betto D. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres. Biochem J. 1982 Nov 1;207(2):261–272. doi: 10.1042/bj2070261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schiaffino S., Settembrini P. Studies on the effect of denervation in developing muscle. I. Differentiation of the sarcotubular system. Virchows Arch B Cell Pathol. 1970;4(4):345–356. doi: 10.1007/BF02906089. [DOI] [PubMed] [Google Scholar]
  36. Sola O. M., Christensen D. L., Martin A. W. Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp Neurol. 1973 Oct;41(1):76–100. doi: 10.1016/0014-4886(73)90182-9. [DOI] [PubMed] [Google Scholar]
  37. Takagi A., Ishiura S., Nonaka I., Sugita H. Myosin light chain components in single muscle fibers of Duchenne muscular dystrophy. Muscle Nerve. 1982 May-Jun;5(5):399–404. doi: 10.1002/mus.880050511. [DOI] [PubMed] [Google Scholar]
  38. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES