Abstract
Microtubule organization and nucleation were studied during in vitro human myogenesis by immunocytology that used monoclonal and polyclonal antitubulin antibodies and a rabbit nonimmune serum that reacts with human centrosomes. In myoblasts, we observed a classical microtubule network centered on juxtanuclear centrosomes. Myotubes possessed numerous microtubules organized in parallel without any apparent nucleation centers. Centrosomes in these cells were not associated one to each nucleus but were often clustered in the vicinity of nuclei groups. They were significantly smaller than those of the mononucleated cells. The periphery of each nucleus in myotubes was labeled with the serum that labels centrosomes suggesting a profound reorganization of microtubule-nucleating material. Regrowth experiments after Nocodazole treatment established that microtubules were growing from the periphery of the nuclei. The redistribution of nucleating material was shown to take place early after myoblast fusion. Such a phenomenon appears to be specific to myogenic differentiation in that artificially induced polykaryons behaved differently: the centrosomes aggregated to form only one or a few giant nucleating centers and the nuclei did not participate directly in the nucleation of microtubules. The significance of these results is discussed in relation to the possible role of the centrosome in establishing cell polarity.
Full Text
The Full Text of this article is available as a PDF (6.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht-Buehler G., Bushnell A. The orientation of centrioles in migrating 3T3 cells. Exp Cell Res. 1979 Apr;120(1):111–118. doi: 10.1016/0014-4827(79)90542-1. [DOI] [PubMed] [Google Scholar]
- Albrecht-Buehler G. Does the geometric design of centrioles imply their function? Cell Motil. 1981;1(2):237–245. doi: 10.1002/cm.970010206. [DOI] [PubMed] [Google Scholar]
- Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977 Oct;12(2):333–339. doi: 10.1016/0092-8674(77)90109-x. [DOI] [PubMed] [Google Scholar]
- Antin P. B., Forry-Schaudies S., Friedman T. M., Tapscott S. J., Holtzer H. Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J Cell Biol. 1981 Aug;90(2):300–308. doi: 10.1083/jcb.90.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornens M. Is the centriole bound to the nuclear membrane? Nature. 1977 Nov 3;270(5632):80–82. doi: 10.1038/270080a0. [DOI] [PubMed] [Google Scholar]
- De Brabander M. Microtubules, central elements of cellular organization. Endeavour. 1982;6(3):124–134. doi: 10.1016/0160-9327(82)90045-x. [DOI] [PubMed] [Google Scholar]
- Devlin R. B., Emerson C. P., Jr Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev Biol. 1979 Mar;69(1):202–216. doi: 10.1016/0012-1606(79)90286-0. [DOI] [PubMed] [Google Scholar]
- Euteneuer U., Schliwa M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature. 1984 Jul 5;310(5972):58–61. doi: 10.1038/310058a0. [DOI] [PubMed] [Google Scholar]
- Goldstein M. A., Entman M. L. Microtubules in mammalian heart muscle. J Cell Biol. 1979 Jan;80(1):183–195. doi: 10.1083/jcb.80.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidemann S. R., Zieve G. W., McIntosh J. R. Evidence for microtubule subunit addition to the distal end of mitotic structures in vitro. J Cell Biol. 1980 Oct;87(1):152–159. doi: 10.1083/jcb.87.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoebeke J., Van Nijen G., De Brabander M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):319–324. doi: 10.1016/0006-291x(76)90524-6. [DOI] [PubMed] [Google Scholar]
- Kallenbach R. J., Mazia D. Origin and maturation of centrioles in association with the nuclear envelope in hypertonic-stressed sea urchin eggs. Eur J Cell Biol. 1982 Aug;28(1):68–76. [PubMed] [Google Scholar]
- Karsenti E., Guilbert B., Bornens M., Avrameas S., Whalen R., Pantaloni D. Detection of tubulin and actin in various cell lines by an immunoperoxidase technique. J Histochem Cytochem. 1978 Nov;26(11):934–947. doi: 10.1177/26.11.363933. [DOI] [PubMed] [Google Scholar]
- Koonce M. P., Cloney R. A., Berns M. W. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility. J Cell Biol. 1984 Jun;98(6):1999–2010. doi: 10.1083/jcb.98.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubai D. F. The evolution of the mitotic spindle. Int Rev Cytol. 1975;43:167–227. doi: 10.1016/s0074-7696(08)60069-8. [DOI] [PubMed] [Google Scholar]
- Kuriyama R., Borisy G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol. 1981 Dec;91(3 Pt 1):814–821. doi: 10.1083/jcb.91.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
- Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maro B., Bornens M. Reorganization of HeLa cell cytoskeleton induced by an uncoupler of oxidative phosphorylation. Nature. 1982 Jan 28;295(5847):334–336. doi: 10.1038/295334a0. [DOI] [PubMed] [Google Scholar]
- Maunoury M. R. Localisation immunocytochimique de la centrosphère de cellules tumorales humaines par utilisation d'anticorps naturels de lapin. C R Acad Sci Hebd Seances Acad Sci D. 1978 Feb 13;286(6):503–506. [PubMed] [Google Scholar]
- Maunoury R., Fontaine C., Régère J., Léonard N., Vedrenne C. Localisation en microscopie immunoélectronique de la zone centriolaire dans des cellules humaines en culture. C R Seances Acad Sci III. 1981 Jan 12;292(2):205–210. [PubMed] [Google Scholar]
- Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
- Nadezhdina E. S., Fais D., Chentsov Y. S. On the association of centrioles with the interphase nucleus. Eur J Cell Biol. 1979 Jun;19(2):109–115. [PubMed] [Google Scholar]
- Samuel J. L., Schwartz K., Lompre A. M., Delcayre C., Marotte F., Swynghedauw B., Rappaport L. Immunological quantitation and localization of tubulin in adult rat heart isolated myocytes. Eur J Cell Biol. 1983 Jul;31(1):99–106. [PubMed] [Google Scholar]
- Schliwa M., Pryzwansky K. B., Euteneuer U. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell. 1982 Dec;31(3 Pt 2):705–717. doi: 10.1016/0092-8674(82)90325-7. [DOI] [PubMed] [Google Scholar]
- Sherline P., Mascardo R. N. Epidermal growth factor induces rapid centrosomal separation in HeLa and 3T3 cells. J Cell Biol. 1982 May;93(2):507–512. doi: 10.1083/jcb.93.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiegelman B. M., Lopata M. A., Kirschner M. W. Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 1979 Feb;16(2):253–263. doi: 10.1016/0092-8674(79)90003-5. [DOI] [PubMed] [Google Scholar]
- Toyama Y., Forry-Schaudies S., Hoffman B., Holtzer H. Effects of taxol and Colcemid on myofibrillogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6556–6560. doi: 10.1073/pnas.79.21.6556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Connolly J. A., Kalnins V. I., Choppin P. W. Relationship between movement and aggregation of centrioles in syncytia and formation of microtubule bundles. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5719–5723. doi: 10.1073/pnas.76.11.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren R. H. Microtubular organization in elongating myogenic cells. J Cell Biol. 1974 Nov;63(2 Pt 1):550–566. doi: 10.1083/jcb.63.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren R. H. The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera). J Cell Biol. 1968 Dec;39(3):544–555. doi: 10.1083/jcb.39.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt F. M., Sidebottom E., Harris H. Microtubule-organizing centres in binucleate cells and homosynkaryons. J Cell Sci. 1980 Aug;44:123–133. doi: 10.1242/jcs.44.1.123. [DOI] [PubMed] [Google Scholar]
- Yasin R., Van Beers G., Nurse K. C., Al-Ani S., Landon D. N., Thompson E. J. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J Neurol Sci. 1977 Jul;32(3):347–360. doi: 10.1016/0022-510x(77)90018-1. [DOI] [PubMed] [Google Scholar]