Abstract
Intermediate filaments (IF) appear to be attached to the nuclear envelope in various mammalian cell types. The nucleus of mouse keratinocytes is enveloped by a cagelike network of keratin-containing bundles of IF (IFB). This network appears to be continuous with the cytoplasmic IFB system that extends to the cell surface. Electron microscopy reveals that the IFB appear to terminate at the level of the nuclear envelope, frequently in association with nuclear pore complexes (Jones, J. C .R., A. E. Goldman, P. Steinert, S. Yuspa, and R. D. Goldman, 1982, Cell Motility, 2:197-213). Based on these observations of nuclear-IF associations, it is of interest to determine the fate and organizational states of IF during mitosis, a period in the cell cycle when the nuclear envelope disassembles. Immunofluorescence microscopy using a monoclonal keratin antibody and electron microscopy of thin and thick sections of mitotic mouse keratinocytes revealed that the IFB system remained intact as the cells entered mitosis and surrounded the developing mitotic spindle. IFB were close to chromosomes and often associated with chromosome arms. In contrast, in HeLa, a human epithelial cell, keratin-containing IFB appear to dissemble as cells enter mitosis (Franke, W. W., E. Schmid, C. Grund, and B. Geiger, 1982, Cell, 30:103-113). The keratin IFB in mitotic HeLa cells appeared to form amorphous nonfilamentous bodies as determined by electron microscopy. However, in HeLa, another IF system composed primarily of a 55,000-mol-wt protein (frequently termed vimentin) appears to remain morphologically intact throughout mitosis in close association with the mitotic apparatus (Celis, J.E., P.M. Larsen, S.J. Fey, and A. Celis, 1983, J. Cell Biol., 97:1429-34). We propose that the mitotic apparatus in both mouse epidermal cells and in HeLa cells is supported and centered within the cell by IFB networks.
Full Text
The Full Text of this article is available as a PDF (5.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubin J. E., Osborn M., Franke W. W., Weber K. Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res. 1980 Sep;129(1):149–165. doi: 10.1016/0014-4827(80)90340-7. [DOI] [PubMed] [Google Scholar]
- Aynardi M. W., Steinert P. M., Goldman R. D. Human epithelial cell intermediate filaments: isolation, purification, and characterization. J Cell Biol. 1984 Apr;98(4):1407–1421. doi: 10.1083/jcb.98.4.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blose S. H., Bushnell A. Observations on the vimentin-10-NM filaments during mitosis in BHK21 cells. Exp Cell Res. 1982 Nov;142(1):57–62. doi: 10.1016/0014-4827(82)90408-6. [DOI] [PubMed] [Google Scholar]
- Blose S. H., Chacko S. Rings of intermediate (100 A) filament bundles in the perinuclear region of vascular endothelial cells. Their mobilization by colcemid and mitosis. J Cell Biol. 1976 Aug;70(2 Pt 1):459–466. doi: 10.1083/jcb.70.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkley B. R., Fistel S. H., Marcum J. M., Pardue R. L. Microtubules in cultured cells; indirect immunofluorescent staining with tubulin antibody. Int Rev Cytol. 1980;63:59–95. doi: 10.1016/s0074-7696(08)61757-x. [DOI] [PubMed] [Google Scholar]
- Celis J. E., Larsen P. M., Fey S. J., Celis A. Phosphorylation of keratin and vimentin polypeptides in normal and transformed mitotic human epithelial amnion cells: behavior of keratin and vimentin filaments during mitosis. J Cell Biol. 1983 Nov;97(5 Pt 1):1429–1434. doi: 10.1083/jcb.97.5.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Grund C., Geiger B. Intermediate filament proteins in nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates. Cell. 1982 Aug;30(1):103–113. doi: 10.1016/0092-8674(82)90016-2. [DOI] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Wellsteed J., Grund C., Gigi O., Geiger B. Change of cytokeratin filament organization during the cell cycle: selective masking of an immunologic determinant in interphase PtK2 cells. J Cell Biol. 1983 Oct;97(4):1255–1260. doi: 10.1083/jcb.97.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green K. J., Goldman R. D. The effects of taxol on cytoskeletal components in cultured fibroblasts and epithelial cells. Cell Motil. 1983;3(4):283–305. doi: 10.1002/cm.970030402. [DOI] [PubMed] [Google Scholar]
- Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
- Horwitz B., Kupfer H., Eshhar Z., Geiger B. Reorganization of arrays of prekeratin filaments during mitosis. Immunofluorescence microscopy with multiclonal and monoclonal prekeratin antibodies. Exp Cell Res. 1981 Aug;134(2):281–290. doi: 10.1016/0014-4827(81)90427-4. [DOI] [PubMed] [Google Scholar]
- Jones J. C., Goldman A. E., Steinert P. M., Yuspa S., Goldman R. D. Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells. Cell Motil. 1982;2(3):197–213. doi: 10.1002/cm.970020302. [DOI] [PubMed] [Google Scholar]
- Lane E. B., Goodman S. L., Trejdosiewicz L. K. Disruption of the keratin filament network during epithelial cell division. EMBO J. 1982;1(11):1365–1372. doi: 10.1002/j.1460-2075.1982.tb01324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson W. J., Traub P. Properties of Ca2+-activated protease specific for the intermediate-sized filament protein vimentin in Ehrlich-ascites-tumour cells. Eur J Biochem. 1981 May;116(1):51–57. doi: 10.1111/j.1432-1033.1981.tb05299.x. [DOI] [PubMed] [Google Scholar]
- Pant H. C., Gainer H. Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins. J Neurobiol. 1980;11(1):1–12. doi: 10.1002/neu.480110102. [DOI] [PubMed] [Google Scholar]
- Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissman B. E., Aaronson S. A. BALB and Kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent balb/c mouse epidermal keratinocyte lines. Cell. 1983 Feb;32(2):599–606. doi: 10.1016/0092-8674(83)90479-8. [DOI] [PubMed] [Google Scholar]
- Zackroff R. V., Goldman A. E., Jones J. C., Steinert P. M., Goldman R. D. Isolation and characterization of keratin-like proteins from cultured cells with fibroblastic morphology. J Cell Biol. 1984 Apr;98(4):1231–1237. doi: 10.1083/jcb.98.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zackroff R. V., Goldman R. D. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6226–6230. doi: 10.1073/pnas.76.12.6226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zieve G. W., Heidemann S. R., McIntosh J. R. Isolation and partial characterization of a cage of filaments that surrounds the mammalian mitotic spindle. J Cell Biol. 1980 Oct;87(1):160–169. doi: 10.1083/jcb.87.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
