Abstract
We examined whether or not purified actin binds to the ends of thin filaments in rabbit skeletal myofibrils. Phase-contrast, fluorescence, and electron microscopic observations revealed that actin does not bind to the ends of thin filaments of intact myofibrils. However, in I-Z-I brushes prepared by dissolving thick filaments at high ionic strength, marked binding of actin to the free ends, i.e., the pointed ends, of thin filaments was observed when actin was added at an early phase of polymerization. As the polymerization of actin proceeded, the binding efficiency decreased. The critical actin concentration for this binding was higher than that for polymerization in solution. The binding of G- actin was not observed at low ionic strength. On the basis of these results, we suggest that a particular structure suppressing the binding of actin is present at the free ends of thin filaments in intact myofibrils and that a part of the end structure population is eliminated or modified at high ionic strength so that further binding of actin becomes possible. The myofibril and I-Z-I brush appear to be useful systems for studies aimed at elucidating the organizational mechanisms of actin filaments in vivo.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASAKURA S. The interaction between G-actin and ATP. Arch Biochem Biophys. 1961 Jan;92:140–149. doi: 10.1016/0003-9861(61)90228-4. [DOI] [PubMed] [Google Scholar]
- Ebashi S., Maruyama K. Preparation and some properties of alpha-actinin-free actin. J Biochem. 1965 Jul;58(1):20–26. doi: 10.1093/oxfordjournals.jbchem.a128159. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell. 1978 Dec;15(4):1253–1268. doi: 10.1016/0092-8674(78)90051-x. [DOI] [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- Hattori A., Takahashi K. Calcium-induced weakening of skeletal muscle Z-disks. J Biochem. 1982 Aug;92(2):381–390. doi: 10.1093/oxfordjournals.jbchem.a133944. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Ip W. Polymerization polarity of actin. J Mechanochem Cell Motil. 1976 Mar;3(3):163–169. [PubMed] [Google Scholar]
- Hayashi T., Silver R. B., Ip W., Cayer M. L., Smith D. S. Actin-myosin interaction. Self-assembly into a bipolar "contractile unit". J Mol Biol. 1977 Apr;111(2):159–171. doi: 10.1016/s0022-2836(77)80120-4. [DOI] [PubMed] [Google Scholar]
- Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
- Kawamura M., Maruyama K. Electron microscopic particle length of F-actin polymerized in vitro. J Biochem. 1970 Mar;67(3):437–457. doi: 10.1093/oxfordjournals.jbchem.a129267. [DOI] [PubMed] [Google Scholar]
- Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo H., Ishiwata S. Uni-directional growth of F-actin. J Biochem. 1976 Jan;79(1):159–171. doi: 10.1093/oxfordjournals.jbchem.a131043. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Kimura S., Ishi T., Kuroda M., Ohashi K. beta-actinin, a regulatory protein of muscle. Purification, characterization and function. J Biochem. 1977 Jan;81(1):215–232. doi: 10.1093/oxfordjournals.jbchem.a131438. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Matsubara S., Natori R., Nonomura Y., Kimura S. Connectin, an elastic protein of muscle. Characterization and Function. J Biochem. 1977 Aug;82(2):317–337. [PubMed] [Google Scholar]
- Maruyama K., Natori R., Nonomura Y. New elastic protein from muscle. Nature. 1976 Jul 1;262(5563):58–60. doi: 10.1038/262058a0. [DOI] [PubMed] [Google Scholar]
- Oosawa F. Size distribution of protein polymers. J Theor Biol. 1970 Apr;27(1):69–86. doi: 10.1016/0022-5193(70)90129-3. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pooler J. Photodynamic alteration of sodium currents in lobster axons. J Gen Physiol. 1972 Oct;60(4):367–387. doi: 10.1085/jgp.60.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson T. F., Winegrad S. Variation of thin filament length in heart muscles. Nature. 1977 May 5;267(5606):74–75. doi: 10.1038/267074a0. [DOI] [PubMed] [Google Scholar]
- Sanger J. W., Mittal B., Sanger J. M. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J Cell Biol. 1984 Mar;98(3):825–833. doi: 10.1083/jcb.98.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada Y., Obinata T. Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol. 1977 Mar;72(3):777–785. doi: 10.1083/jcb.72.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
- Traeger L., Goldstein M. A. Thin filaments are not of uniform length in rat skeletal muscle. J Cell Biol. 1983 Jan;96(1):100–103. doi: 10.1083/jcb.96.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H. Bidirectional polymerization of G-actin on the human erythrocyte membrane. J Cell Biol. 1984 Mar;98(3):1102–1110. doi: 10.1083/jcb.98.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., McClure J., Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3698–3702. doi: 10.1073/pnas.76.8.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
- Wegner A., Isenberg G. 12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4922–4925. doi: 10.1073/pnas.80.16.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- dos Remedios C. G., Gilmour D. Is there a third type of filament in striated muscles? J Biochem. 1978 Jul;84(1):235–238. doi: 10.1093/oxfordjournals.jbchem.a132113. [DOI] [PubMed] [Google Scholar]
