Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Jan 1;100(1):333–336. doi: 10.1083/jcb.100.1.333

Changes in the distribution of a spectrin-like protein during development of the preimplantation mouse embryo

PMCID: PMC2113496  PMID: 3880757

Abstract

The mouse blastocyst expresses a 240,000-mol-wt polypeptide that cross- reacts with antibody to avian erythrocyte alpha-spectrin. Immunofluorescence localization showed striking changes in the distribution of the putative embryonic spectrin during preimplantation and early postimplantation development. There was no detectable spectrin in either the unfertilized or fertilized egg. The first positive reaction was observed in the early 2-cell stage when a bright band of fluorescence delimited the region of cell-cell contact. The blastomeres subsequently developed continuous cortical layers of spectrin and this distribution was maintained throughout the cleavage stages. A significant reduction in fluorescence intensity occurred before implantation in the apical region of the mural trophoblast and the trophoblast outgrowths developed linear arrays of spectrin spots that were oriented in the direction of spreading. In contrast to the alterations that take place in the periphery of the embryo, spectrin was consistently present in the cortical cytoplasm underlying regions of contact between the blastomeres and between cells of the inner cell mass. The results suggest a possible role for spectrin in cell-cell interactions during early development.

Full Text

The Full Text of this article is available as a PDF (1,017.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
  2. Bennett V. The molecular basis for membrane - cytoskeleton association in human erythrocytes. J Cell Biochem. 1982;18(1):49–65. doi: 10.1002/jcb.1982.240180106. [DOI] [PubMed] [Google Scholar]
  3. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  4. Cheney R., Hirokawa N., Levine J., Willard M. Intracellular movement of fodrin. Cell Motil. 1983;3(5-6):649–655. doi: 10.1002/cm.970030529. [DOI] [PubMed] [Google Scholar]
  5. Chow I., Poo M. M. Redistribution of cell surface receptors induced by cell-cell contact. J Cell Biol. 1982 Nov;95(2 Pt 1):510–518. doi: 10.1083/jcb.95.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen C. M. The molecular organization of the red cell membrane skeleton. Semin Hematol. 1983 Jul;20(3):141–158. [PubMed] [Google Scholar]
  7. Ducibella T., Ukena T., Karnovsky M., Anderson E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol. 1977 Jul;74(1):153–167. doi: 10.1083/jcb.74.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  9. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  10. Glenney J. R., Jr, Glenney P., Weber K. Mapping the fodrin molecule with monoclonal antibodies. A general approach for rod-like multidomain proteins. J Mol Biol. 1983 Jun 25;167(2):275–293. doi: 10.1016/s0022-2836(83)80336-2. [DOI] [PubMed] [Google Scholar]
  11. Goldstein L. S., Spindle A. I., Pedersen R. A. X-ray sensitivity of the preimplantation mouse embryo in vitro. Radiat Res. 1975 May;62(2):276–287. [PubMed] [Google Scholar]
  12. Goodman S. R., Shiffer K. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Am J Physiol. 1983 Mar;244(3):C121–C141. doi: 10.1152/ajpcell.1983.244.3.C121. [DOI] [PubMed] [Google Scholar]
  13. Goodman S. R., Zagon I. S., Whitfield C. F., Casoria L. A., McLaughlin P. J., Laskiewicz T. L. A spectrin-like protein from mouse brain membranes: immunological and structural correlations with erythrocyte spectrin. Cell Motil. 1983;3(5-6):635–647. doi: 10.1002/cm.970030528. [DOI] [PubMed] [Google Scholar]
  14. Granger B. L., Repasky E. A., Lazarides E. Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol. 1982 Feb;92(2):299–312. doi: 10.1083/jcb.92.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson B. W., Grund C., Schmid E., Bürki K., Franke W. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation. 1980;17(3):161–179. doi: 10.1111/j.1432-0436.1980.tb01093.x. [DOI] [PubMed] [Google Scholar]
  16. Kerrick W. G., Bourguignon L. Y. Regulation of receptor capping in mouse lymphoma T cells by Ca2+-activated myosin light chain kinase. Proc Natl Acad Sci U S A. 1984 Jan;81(1):165–169. doi: 10.1073/pnas.81.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lazarides E., Nelson W. J. Expression of spectrin in nonerythroid cells. Cell. 1982 Dec;31(3 Pt 2):505–508. doi: 10.1016/0092-8674(82)90306-3. [DOI] [PubMed] [Google Scholar]
  18. Lazarides E., Nelson W. J., Kasamatsu T. Segregation of two spectrin forms in the chicken optic system: a mechanism for establishing restricted membrane-cytoskeletal domains in neurons. Cell. 1984 Feb;36(2):269–278. doi: 10.1016/0092-8674(84)90220-4. [DOI] [PubMed] [Google Scholar]
  19. Lehtonen E., Badley R. A. Localization of cytoskeletal proteins in preimplantation mouse embryos. J Embryol Exp Morphol. 1980 Feb;55:211–225. [PubMed] [Google Scholar]
  20. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levine J., Willard M. Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface molecules. Proc Natl Acad Sci U S A. 1983 Jan;80(1):191–195. doi: 10.1073/pnas.80.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lux S. E. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin Hematol. 1979 Jan;16(1):21–51. [PubMed] [Google Scholar]
  23. Magnuson T., Demsey A., Stackpole C. W. Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Dev Biol. 1977 Dec;61(2):252–261. doi: 10.1016/0012-1606(77)90296-2. [DOI] [PubMed] [Google Scholar]
  24. Marchesi V. T. The red cell membrane skeleton: recent progress. Blood. 1983 Jan;61(1):1–11. [PubMed] [Google Scholar]
  25. Nelson W. J., Colaço C. A., Lazarides E. Involvement of spectrin in cell-surface receptor capping in lymphocytes. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1626–1630. doi: 10.1073/pnas.80.6.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pratt H. P., Ziomek C. A., Reeve W. J., Johnson M. H. Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol. 1982 Aug;70:113–132. [PubMed] [Google Scholar]
  27. Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
  28. Schlafke S., Enders A. C. Cellular basis of interaction between trophoblast and uterus at implantation. Biol Reprod. 1975 Feb;12(1):41–65. doi: 10.1095/biolreprod12.1.41. [DOI] [PubMed] [Google Scholar]
  29. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  30. Sobel J. S. Cell-cell contact modulation of myosin organization in the early mouse embryo. Dev Biol. 1983 Nov;100(1):207–213. doi: 10.1016/0012-1606(83)90212-9. [DOI] [PubMed] [Google Scholar]
  31. Sobel J. S. Localization of myosin in the preimplantation mouse embryo. Dev Biol. 1983 Jan;95(1):227–231. doi: 10.1016/0012-1606(83)90021-0. [DOI] [PubMed] [Google Scholar]
  32. Sobel J. S. Myosin rings and spreading in mouse blastomeres. J Cell Biol. 1984 Sep;99(3):1145–1150. doi: 10.1083/jcb.99.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spindle A. I., Pedersen R. A. Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J Exp Zool. 1973 Dec;186(3):305–318. doi: 10.1002/jez.1401860308. [DOI] [PubMed] [Google Scholar]
  34. Surani M. A., Barton S. C., Burling A. Differentiation of 2-cell and 8-cell mouse embryos arrested by cytoskeletal inhibitors. Exp Cell Res. 1980 Feb;125(2):275–286. doi: 10.1016/0014-4827(80)90123-8. [DOI] [PubMed] [Google Scholar]
  35. Sutherland A. E., Calarco-Gillam P. G. Analysis of compaction in the preimplantation mouse embryo. Dev Biol. 1983 Dec;100(2):328–338. doi: 10.1016/0012-1606(83)90227-0. [DOI] [PubMed] [Google Scholar]
  36. Tachi S., Tachi C. Ultrastructural studies on maternal-embryonic cell interaction during experimentally induced implantation of rat blastocysts to the endometrium of the mouse. Dev Biol. 1979 Jan;68(1):203–223. doi: 10.1016/0012-1606(79)90254-9. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES