Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Mar 1;100(3):775–785. doi: 10.1083/jcb.100.3.775

Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes

PMCID: PMC2113504  PMID: 3882722

Abstract

Band 4.9 (a 48,000-mol-wt polypeptide) has been partially purified from human erythrocyte membranes. In solution, band 4.9 polypeptides exist as trimers with an apparent molecular weight of 145,000 and a Stokes radius of 50 A. Electron microscopy shows that the protein is a three- lobed structure with a radius slightly greater than 50 A. When gel- filtered rabbit muscle actin is polymerized in the presence of band 4.9, actin bundles are generated that are similar in appearance to those induced by "vinculin" or fimbrin. The bundles appear brittle and when they are centrifuged small pieces of filaments break off and remain in the supernatant. At low band 4.9 to actin molar ratios (1:30), band 4.9 lowers the apparent steady-state low-shear falling ball viscosity by sequestering filaments into thin bundles; at higher ratios, the bundles become thicker and obstruct the ball's movement leading to an apparent increase in steady-state viscosity. Band 4.9 increases the length of the lag phase and decreases the rate of elongation during actin polymerization as measured by high-shear Ostwald viscometry or by the increase in the fluorescence of pyrene- labeled actin. Band 4.9 does not alter the critical actin monomer concentration. We hypothesize that band 4.9, together with actin, erythrocyte tropomyosin, and spectrin, forms structures in erythroid precursor cells analogous to those formed by fimbrin, actin, tropomyosin, and TW 260/240 in epithelial brush borders. During erythroid development and enucleation, the actin filaments may depolymerize up to the membrane, leaving a membrane skeleton with short stubs of actin bundled by band 4.9 and cross-linked by spectrin.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
  2. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  5. Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
  6. Brenner S. L., Korn E. D. Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. Evidence for oligomeric actin in the erythrocyte cytoskeleton. J Biol Chem. 1980 Feb 25;255(4):1670–1676. [PubMed] [Google Scholar]
  7. Bretscher A. Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6849–6853. doi: 10.1073/pnas.78.11.6849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
  9. Bryan J., Kane R. E. Separation and interaction of the major components of sea urchin actin gel. J Mol Biol. 1978 Oct 25;125(2):207–224. doi: 10.1016/0022-2836(78)90345-5. [DOI] [PubMed] [Google Scholar]
  10. Burridge K., Feramisco J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 1980 Mar;19(3):587–595. doi: 10.1016/s0092-8674(80)80035-3. [DOI] [PubMed] [Google Scholar]
  11. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  12. Cohen C. M., Branton D. The role of spectrin in erythrocyte membrane-stimulated actin polymerisation. Nature. 1979 May 10;279(5709):163–165. doi: 10.1038/279163a0. [DOI] [PubMed] [Google Scholar]
  13. Cohen C. M., Foley S. F., Korsgren C. A protein immunologically related to erythrocyte band 4.1 is found on stress fibres on non-erythroid cells. Nature. 1982 Oct 14;299(5884):648–650. doi: 10.1038/299648a0. [DOI] [PubMed] [Google Scholar]
  14. Cohen C. M., Foley S. F. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane. J Cell Biol. 1980 Aug;86(2):694–698. doi: 10.1083/jcb.86.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cohen C. M., Foley S. F. The role of band 4.1 in the association of actin with erythrocyte membranes. Biochim Biophys Acta. 1982 Jun 28;688(3):691–701. doi: 10.1016/0005-2736(82)90281-4. [DOI] [PubMed] [Google Scholar]
  16. Cohen C. M. The molecular organization of the red cell membrane skeleton. Semin Hematol. 1983 Jul;20(3):141–158. [PubMed] [Google Scholar]
  17. Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
  18. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  19. Craig S. W., Lancashire C. L. Comparison of intestinal brush-border 95-Kdalton polypeptide and alpha-actinins. J Cell Biol. 1980 Mar;84(3):655–667. doi: 10.1083/jcb.84.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Craig S. W., Powell L. D. Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell. 1980 Dec;22(3):739–746. doi: 10.1016/0092-8674(80)90550-4. [DOI] [PubMed] [Google Scholar]
  21. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  22. Dzandu J. K., Johnson R. M. Membrane protein phosphorylation in intact normal and sickle cell erythrocytes. J Biol Chem. 1980 Jul 10;255(13):6382–6386. [PubMed] [Google Scholar]
  23. Evans R. R., Robson R. M., Stromer M. H. Properties of smooth muscle vinculin. J Biol Chem. 1984 Mar 25;259(6):3916–3924. [PubMed] [Google Scholar]
  24. Fairbanks G., Avruch J., Dino J. E., Patel V. P. Phosphorylation and dephosphorylation of spectrin. J Supramol Struct. 1978;9(1):97–112. doi: 10.1002/jss.400090110. [DOI] [PubMed] [Google Scholar]
  25. Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
  26. Fenner C., Traut R. R., Mason D. T., Wikman-Coffelt J. Quantification of Coomassie Blue stained proteins in polyacrylamide gels based on analyses of eluted dye. Anal Biochem. 1975 Feb;63(2):595–602. doi: 10.1016/0003-2697(75)90386-3. [DOI] [PubMed] [Google Scholar]
  27. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  28. Fowler V. M., Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984 May 10;259(9):5978–5989. [PubMed] [Google Scholar]
  29. Fowler V. M., Luna E. J., Hargreaves W. R., Taylor D. L., Branton D. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane. J Cell Biol. 1981 Feb;88(2):388–395. doi: 10.1083/jcb.88.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  31. Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
  33. Glenney J. R., Jr, Kaulfus P., Matsudaira P., Weber K. F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J Biol Chem. 1981 Sep 10;256(17):9283–9288. [PubMed] [Google Scholar]
  34. Glenney J. R., Jr, Kaulfus P., Weber K. F actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end. Cell. 1981 May;24(2):471–480. doi: 10.1016/0092-8674(81)90338-x. [DOI] [PubMed] [Google Scholar]
  35. Glenney J. R., Jr, Weber K. Calcium control of microfilaments: uncoupling of the F-actin-severing and -bundling activity of villin by limited proteolysis in vitro. Proc Natl Acad Sci U S A. 1981 May;78(5):2810–2814. doi: 10.1073/pnas.78.5.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Goodman S. R., Shiffer K. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Am J Physiol. 1983 Mar;244(3):C121–C141. doi: 10.1152/ajpcell.1983.244.3.C121. [DOI] [PubMed] [Google Scholar]
  37. Gratzer W. B. The red cell membrane and its cytoskeleton. Biochem J. 1981 Jul 15;198(1):1–8. doi: 10.1042/bj1980001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Guthrow C. E., Jr, Allen J. E., Rasmussen H. Phosphorylation of an endogenous membrane protein by an endogenous, membrane-associated cyclic adenosine 3',5'-monophosphate-dependent protein kinase in human erythrocyte ghosts. J Biol Chem. 1972 Dec 25;247(24):8145–8153. [PubMed] [Google Scholar]
  39. Hanson J. Evidence from electron microscope studies on actin paracrystals concerning the origin of the cross-striation in the thin filaments of vertebrate skeletal muscle. Proc R Soc Lond B Biol Sci. 1973 Feb 27;183(1070):39–58. doi: 10.1098/rspb.1973.0003. [DOI] [PubMed] [Google Scholar]
  40. Harris H. W., Jr, Lux S. E. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J Biol Chem. 1980 Dec 10;255(23):11512–11520. [PubMed] [Google Scholar]
  41. Hirokawa N., Tilney L. G., Fujiwara K., Heuser J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol. 1982 Aug;94(2):425–443. doi: 10.1083/jcb.94.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hitchcock S. E., Carisson L., Lindberg U. Depolymerization of F-actin by deoxyribonuclease I. Cell. 1976 Apr;7(4):531–542. doi: 10.1016/0092-8674(76)90203-8. [DOI] [PubMed] [Google Scholar]
  43. Holdstock S. J., Ralston G. B. The solubilization of cytoskeletons of human erythrocyte membranes by p-mercuribenzene sulphonate. Biochim Biophys Acta. 1983 Dec 21;736(2):214–219. doi: 10.1016/0005-2736(83)90286-9. [DOI] [PubMed] [Google Scholar]
  44. Hosey M. M., Tao M. An analysis of the autophosphorylation of rabbit and human erythrocyte membranes. Biochemistry. 1976 Apr 6;15(7):1561–1568. doi: 10.1021/bi00652a029. [DOI] [PubMed] [Google Scholar]
  45. Hosey M. M., Tao M. Phosphorylation of rabbit and human erythrocyte membranes by soluble adenosine 3':5'-monophosphate-dependent and -independent protein kinases. J Biol Chem. 1977 Jan 10;252(1):102–109. [PubMed] [Google Scholar]
  46. Isenberg G., Aebi U., Pollard T. D. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature. 1980 Dec 4;288(5790):455–459. doi: 10.1038/288455a0. [DOI] [PubMed] [Google Scholar]
  47. Isenberg G., Leonard K., Jockusch B. M. Structural aspects of vinculin-actin interactions. J Mol Biol. 1982 Jun 25;158(2):231–249. doi: 10.1016/0022-2836(82)90431-4. [DOI] [PubMed] [Google Scholar]
  48. Jockusch B. M., Isenberg G. Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U S A. 1981 May;78(5):3005–3009. doi: 10.1073/pnas.78.5.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Johnson R. M., Dzandu J. K. Calcium and ionophore A23187 induce the sickle cell membrane phosphorylation pattern in normal erythrocytes. Biochim Biophys Acta. 1982 Nov 8;692(2):218–222. doi: 10.1016/0005-2736(82)90524-7. [DOI] [PubMed] [Google Scholar]
  50. Kant J. A., Steck T. L. Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes. J Biol Chem. 1973 Dec 25;248(24):8457–8464. [PubMed] [Google Scholar]
  51. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  52. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  53. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  54. Lin D. C., Lin S. Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 May;76(5):2345–2349. doi: 10.1073/pnas.76.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Lin D. C. Spectrin-4.1-actin complex of the human erythrocyte: molecular basis of its ability to bind cytochalasins with high-affinity and to accelerate actin polymerization in vitro. J Supramol Struct Cell Biochem. 1981;15(2):129–138. doi: 10.1002/jsscb.1981.380150204. [DOI] [PubMed] [Google Scholar]
  56. Liu S. C., Palek J. Cross-linkings between spectrin and band 3 in human erythroycte membranes. J Supramol Struct. 1979;10(1):97–109. doi: 10.1002/jss.400100109. [DOI] [PubMed] [Google Scholar]
  57. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  58. Mooseker M. S., Graves T. A., Wharton K. A., Falco N., Howe C. L. Regulation of microvillus structure: calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells. J Cell Biol. 1980 Dec;87(3 Pt 1):809–822. doi: 10.1083/jcb.87.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Nermut M. V. Visualization of the "membrane skeleton" in human erythrocytes by freeze-etching. Eur J Cell Biol. 1981 Oct;25(2):265–271. [PubMed] [Google Scholar]
  60. Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
  61. Palek J., Liu S. C. Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area. Semin Hematol. 1979 Jan;16(1):75–93. [PubMed] [Google Scholar]
  62. Palek J., Lux S. E. Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias. Semin Hematol. 1983 Jul;20(3):189–224. [PubMed] [Google Scholar]
  63. Patel V. P., Fairbanks G. Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol. 1981 Feb;88(2):430–440. doi: 10.1083/jcb.88.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Pinder J. C., Gratzer W. B. Structural and dynamic states of actin in the erythrocyte. J Cell Biol. 1983 Mar;96(3):768–775. doi: 10.1083/jcb.96.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Plut D. A., Hosey M. M., Tao M. Evidence for the participation of cytosolic protein kinases in membrane phosphorylation in intact erythrocytes. Eur J Biochem. 1978 Jan 16;82(2):333–337. doi: 10.1111/j.1432-1033.1978.tb12027.x. [DOI] [PubMed] [Google Scholar]
  66. Pollard T. D., Cooper J. A. Methods to characterize actin filament networks. Methods Enzymol. 1982;85(Pt B):211–233. doi: 10.1016/0076-6879(82)85022-2. [DOI] [PubMed] [Google Scholar]
  67. Ralston G. B., Crisp E. A. The action of organic mercurials on the erythrocyte membrane. Biochim Biophys Acta. 1981 Nov 20;649(1):98–104. doi: 10.1016/0005-2736(81)90013-4. [DOI] [PubMed] [Google Scholar]
  68. Rubin C. S. Adenosine 3':5'-monophosphate-regulated phosphorylation of erythrocyte membrane proteins. Separation of membrane-associated cyclic adenosine 3':5'-monophosphate-dependent protein kinase from its endogenous substrates. J Biol Chem. 1975 Dec 10;250(23):9044–9052. [PubMed] [Google Scholar]
  69. Schindler M., Koppel D. E., Sheetz M. P. Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457–1461. doi: 10.1073/pnas.77.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sheetz M. P., Casaly J. 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons. J Biol Chem. 1980 Oct 25;255(20):9955–9960. [PubMed] [Google Scholar]
  71. Shelton R. L., Jr, Langdon R. G. Quantitation of the major proteins of the human erythrocyte membrane by amino acid analysis. Anal Biochem. 1984 Aug 1;140(2):366–371. doi: 10.1016/0003-2697(84)90179-9. [DOI] [PubMed] [Google Scholar]
  72. Siegel D. L., Goodman S. R., Branton D. The effect of endogenous proteases on the spectrin binding proteins of human erythrocytes. Biochim Biophys Acta. 1980 Jun 6;598(3):517–527. doi: 10.1016/0005-2736(80)90032-2. [DOI] [PubMed] [Google Scholar]
  73. Southwick F. S., Hartwig J. H. Acumentin, a protein in macrophages which caps the "pointed" end of action filaments. Nature. 1982 May 27;297(5864):303–307. doi: 10.1038/297303a0. [DOI] [PubMed] [Google Scholar]
  74. Southwick F. S., Tatsumi N., Stossel T. P. Acumentin, an actin-modulating protein of rabbit pulmonary macrophages. Biochemistry. 1982 Nov 23;21(24):6321–6326. doi: 10.1021/bi00267a043. [DOI] [PubMed] [Google Scholar]
  75. Spudich J. A., Amos L. A. Structure of actin filament bundles from microvilli of sea urchin eggs. J Mol Biol. 1979 Apr 5;129(2):319–331. doi: 10.1016/0022-2836(79)90285-7. [DOI] [PubMed] [Google Scholar]
  76. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  77. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Tao M., Conway R., Cheta S. Purification and characterization of a membrane-bound protein kinase from human erythrocytes. J Biol Chem. 1980 Mar 25;255(6):2563–2568. [PubMed] [Google Scholar]
  79. Tchernia G., Mohandas N., Shohet S. B. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest. 1981 Aug;68(2):454–460. doi: 10.1172/JCI110275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Thomas E. L., King L. E., Jr, Morrison M. The uptake of cyclic AMP by human erythrocytes and its effect on membrane phosphorylation. Arch Biochem Biophys. 1979 Sep;196(2):459–464. doi: 10.1016/0003-9861(79)90297-2. [DOI] [PubMed] [Google Scholar]
  81. Thompson S., Rennie C. M., Maddy A. H. A re-evaluation of the surface complexity of the intact erythrocyte. Biochim Biophys Acta. 1980 Aug 14;600(3):756–768. doi: 10.1016/0005-2736(80)90478-2. [DOI] [PubMed] [Google Scholar]
  82. Timme A. H. The ultrastructure of the erythrocyte cytoskeleton at neutral and reduced pH. J Ultrastruct Res. 1981 Nov;77(2):199–209. doi: 10.1016/s0022-5320(81)80041-x. [DOI] [PubMed] [Google Scholar]
  83. Tokuyasu K. T., Dutton A. H., Geiger B., Singer S. J. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7619–7623. doi: 10.1073/pnas.78.12.7619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Tsukita S., Tsukita S., Ishikawa H. Bidirectional polymerization of G-actin on the human erythrocyte membrane. J Cell Biol. 1984 Mar;98(3):1102–1110. doi: 10.1083/jcb.98.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Tsukita S., Tsukita S., Ishikawa H. Cytoskeletal network underlying the human erythrocyte membrane. Thin-section electron microscopy. J Cell Biol. 1980 Jun;85(3):567–576. doi: 10.1083/jcb.85.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  87. Tyler J. M., Hargreaves W. R., Branton D. Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5192–5196. doi: 10.1073/pnas.76.10.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Wilkins J. A., Lin S. High-affinity interaction of vinculin with actin filaments in vitro. Cell. 1982 Jan;28(1):83–90. doi: 10.1016/0092-8674(82)90377-4. [DOI] [PubMed] [Google Scholar]
  89. Yin H. L., Zaner K. S., Stossel T. P. Ca2+ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J Biol Chem. 1980 Oct 10;255(19):9494–9500. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES