Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Mar 1;100(3):873–886. doi: 10.1083/jcb.100.3.873

Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis

PMCID: PMC2113517  PMID: 3882724

Abstract

Using antibodies to various nucleolar and ribosomal proteins, we define, by immunolocalization in situ, the distribution of nucleolar proteins in the different morphological nucleolar subcompartments. In the present study we describe the nucleolar localization of a specific ribosomal protein (S1) by immunofluorescence and immunoelectron microscopy using a monoclonal antibody (RS1-105). In immunoblotting experiments, this antibody reacts specifically with the largest and most acidic protein of the small ribosomal subunit (S1) and shows wide interspecies cross-reactivity from amphibia to man. Beside its localization in cytoplasmic ribosomes, this protein is found to be specifically localized in the granular component of the nucleolus and in distinct granular aggregates scattered over the nucleoplasm. This indicates that ribosomal protein S1, in contrast to reports on other ribosomal proteins, is not bound to nascent pre-rRNA transcripts but attaches to preribosomes at later stages of rRNA processing and maturation. This protein is not detected in the residual nucleolar structures of cells inactive in rRNA synthesis such as amphibian and avian erythrocytes. During mitosis, the nucleolar material containing ribosomal protein S1 undergoes a remarkable transition and shows a distribution distinct from that of several other nucleolar proteins. In prophase, the nucleolus disintegrates and protein S1 appears in numerous small granules scattered throughout the prophase nucleus. During metaphase and anaphase, a considerable amount of this protein is found in association with the surfaces of all chromosomes and finely dispersed in the cell plasm. In telophase, protein S1-containing material reaccumulates in granular particles in the nucleoplasm of the newly formed nuclei and, finally, in the re-forming nucleoli. These observations indicate that the nucleolus-derived particles containing ribosomal protein S1 are different from cytoplasmic ribosomes and, in the living cell, are selectively recollected after mitosis into the newly formed nuclei and translocated into a specific nucleolar subcompartment, i.e., the granular component. The nucleolar location of ribosomal protein S1 and its rearrangement during mitosis is discussed in relation to the distribution of other nucleolar proteins.

Full Text

The Full Text of this article is available as a PDF (7.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auger-Buendia M. A., Longuet M. Characterization of proteins from nucleolar preribosomes of mouse leukemia cells by two-dimensional polyacrylamide gel electrophoresis. Eur J Biochem. 1978 Apr;85(1):105–114. doi: 10.1111/j.1432-1033.1978.tb12217.x. [DOI] [PubMed] [Google Scholar]
  2. Benavente R., Krohne G., Stick R., Franke W. W. Electron microscopic immunolocalization of a karyoskeletal protein of molecular weight 145 000 in nucleoli and perinucleolar bodies of Xenopus laevis. Exp Cell Res. 1984 Mar;151(1):224–235. doi: 10.1016/0014-4827(84)90370-7. [DOI] [PubMed] [Google Scholar]
  3. Bernhard W. Drug-induced changes in the interphase nucleus. Adv Cytopharmacol. 1971 May;1:49–67. [PubMed] [Google Scholar]
  4. Bianchi F. B., Rizzetto M., Penfold P., Swana G. T., Doniach D. Ultrastructural localization and characterization of a ribosomal antibody detected by immunofluorescence in systemic lupus erythematosus. Clin Exp Immunol. 1974 Aug;17(4):629–636. [PMC free article] [PubMed] [Google Scholar]
  5. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bouteille M., Bouvier D., Seve A. P. Heterogeneity and territorial organization of the nuclear matrix and related structures. Int Rev Cytol. 1983;83:135–182. doi: 10.1016/s0074-7696(08)61687-3. [DOI] [PubMed] [Google Scholar]
  7. Das N. K., Micou-Eastwood J., Ramamurthy G., Alfert M. Sites of synthesis and processing of ribosomal RNA presurosrs within the nucleolus of Urechis caupo eggs. Proc Natl Acad Sci U S A. 1970 Oct;67(2):968–975. doi: 10.1073/pnas.67.2.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daskal Y., Smetana K., Busch H. Evidence from studies on segregated nucleoli that nucleolar silver staining proteins C23 and B23 are in the fibrillar component. Exp Cell Res. 1980 Jun;127(2):285–291. doi: 10.1016/0014-4827(80)90434-6. [DOI] [PubMed] [Google Scholar]
  9. Fakan S., Bernhard W. Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res. 1971 Jul;67(1):129–141. doi: 10.1016/0014-4827(71)90628-8. [DOI] [PubMed] [Google Scholar]
  10. Fakan S., Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 1980;65:255–299. doi: 10.1016/s0074-7696(08)61962-2. [DOI] [PubMed] [Google Scholar]
  11. Fan H., Penman S. Regulation of synthesis and processing of nucleolar components in metaphase-arrested cells. J Mol Biol. 1971 Jul 14;59(1):27–42. doi: 10.1016/0022-2836(71)90411-6. [DOI] [PubMed] [Google Scholar]
  12. Ford P. J. The proteins of Xenopus ovary ribosomes. Biochem J. 1971 Dec;125(4):1091–1107. doi: 10.1042/bj1251091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franke W. W., Denk H., Kalt R., Schmid E. Biochemical and immunological identification of cytokeratin proteins present in hepatocytes of mammalian liver tissue. Exp Cell Res. 1981 Feb;131(2):299–318. doi: 10.1016/0014-4827(81)90234-2. [DOI] [PubMed] [Google Scholar]
  14. Franke W. W., Scheer U. Pathways of nucleocytoplasmic translocation of ribonucleoproteins. Symp Soc Exp Biol. 1974;(28):249–282. [PubMed] [Google Scholar]
  15. Franke W. W., Schmid E., Vandekerckhove J., Weber K. Permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J Cell Biol. 1980 Dec;87(3 Pt 1):594–600. doi: 10.1083/jcb.87.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franke W. W., Schmid E., Winter S., Osborn M., Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res. 1979 Oct 1;123(1):25–46. doi: 10.1016/0014-4827(79)90418-x. [DOI] [PubMed] [Google Scholar]
  17. GRANBOULAN N., GRANBOULAN P. CYTOCHIMIE ULTRASTRUCTURALE DU NUCL'EOLE. II. ETUDE DES SITES DE SYNTH'ESE DU RNA DANS LE NUCL'EOLE ET LE NOYAU. Exp Cell Res. 1965 Jun;38:604–619. doi: 10.1016/0014-4827(65)90384-8. [DOI] [PubMed] [Google Scholar]
  18. Goessens G. Nucleolar structure. Int Rev Cytol. 1984;87:107–158. doi: 10.1016/s0074-7696(08)62441-9. [DOI] [PubMed] [Google Scholar]
  19. Gordon J., Towbin H., Rosenthal M. Antibodies directed against ribosomal protein determinants in the sera of patients with connective tissue diseases. J Rheumatol. 1982 Mar-Apr;9(2):247–252. [PubMed] [Google Scholar]
  20. Hadjiolov A. A. Biogenesis of ribosomes in eukaryotes. Subcell Biochem. 1980;7:1–80. doi: 10.1007/978-1-4615-7948-9_1. [DOI] [PubMed] [Google Scholar]
  21. Hadjiolov A. A., Nikolaev N. Maturation of ribosomal ribonucleic acids and the biogenesis of ribosomes. Prog Biophys Mol Biol. 1976;31(2):95–144. doi: 10.1016/0079-6107(78)90006-8. [DOI] [PubMed] [Google Scholar]
  22. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  23. Hentschel C. C., Tata J. R. Template-engaged and free RNA polymerases during Xenopus erythroid cell maturation. Dev Biol. 1978 Aug;65(2):496–507. doi: 10.1016/0012-1606(78)90044-1. [DOI] [PubMed] [Google Scholar]
  24. Higashinakagawa T., Muramatsu M. Ribosome precursor particles in the nucleolus of rat liver. Easily extractable nucleolar 60-S ribonucleoprotein particles and their relation to cytoplasmic large ribosomal subunits. Eur J Biochem. 1974 Feb 15;42(1):245–258. doi: 10.1111/j.1432-1033.1974.tb03334.x. [DOI] [PubMed] [Google Scholar]
  25. Kalthoff H., Darmer D., Towbin H., Gordon J., Amons R., Möller W., Richter D. Ribosomal protein S6 from Xenopus laevis ovaries. Isolation, phosphorylation in vivo and cross-reaction with heterologous anti-S6 antibodies. Eur J Biochem. 1982 Mar 1;122(3):439–443. [PubMed] [Google Scholar]
  26. Kalthoff H., Richter D. Subcellular transport and ribosomal incorporation of microinjected protein S6 in oocytes from Xenopus laevis. Biochemistry. 1982 Feb 16;21(4):741–745. doi: 10.1021/bi00533a025. [DOI] [PubMed] [Google Scholar]
  27. Kleinschmidt J. A., Franke W. W. Soluble acidic complexes containing histones H3 and H4 in nuclei of Xenopus laevis oocytes. Cell. 1982 Jul;29(3):799–809. doi: 10.1016/0092-8674(82)90442-1. [DOI] [PubMed] [Google Scholar]
  28. Kleinschmidt J. A., Scheer U., Dabauvalle M. C., Bustin M., Franke W. W. High mobility group proteins of amphibian oocytes: a large storage pool of a soluble high mobility group-1-like protein and involvement in transcriptional events. J Cell Biol. 1983 Sep;97(3):838–848. doi: 10.1083/jcb.97.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Krohne G., Debus E., Osborn M., Weber K., Franke W. W. A monoclonal antibody against nuclear lamina proteins reveals cell type-specificity in Xenopus laevis. Exp Cell Res. 1984 Jan;150(1):47–59. doi: 10.1016/0014-4827(84)90700-6. [DOI] [PubMed] [Google Scholar]
  30. Krohne G., Franke W. W., Ely S., D'Arcy A., Jost E. Localization of a nuclear envelope-associated protein by indirect immunofluorescence microscopy using antibodies against a major polypeptide from rat liver fractions enriched in nuclear envelope-associated material. Cytobiologie. 1978 Oct;18(1):22–38. [PubMed] [Google Scholar]
  31. Krohne G., Franke W. W. Immunological identification and localization of the predominant nuclear protein of the amphibian oocyte nucleus. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1034–1038. doi: 10.1073/pnas.77.2.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Krohne G., Stick R., Kleinschmidt J. A., Moll R., Franke W. W., Hausen P. Immunological localization of a major karyoskeletal protein in nucleoli of oocytes and somatic cells of Xenopus laevis. J Cell Biol. 1982 Sep;94(3):749–754. doi: 10.1083/jcb.94.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Krüger C., Seifart K. H. RNA polymerases during differentiation of avian erythrocytes. Exp Cell Res. 1977 May;106(2):446–450. doi: 10.1016/0014-4827(77)90200-2. [DOI] [PubMed] [Google Scholar]
  34. Kumar A. Ribosome synthesis in Tetrahymena pyriformis. J Cell Biol. 1970 Jun;45(3):623–634. doi: 10.1083/jcb.45.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kumar A., Warner J. R. Characterization of ribosomal precursor particles from HeLa cell nucleoli. J Mol Biol. 1972 Jan 28;63(2):233–246. doi: 10.1016/0022-2836(72)90372-5. [DOI] [PubMed] [Google Scholar]
  36. Kuter D. J., Rodgers A. The protein composition of HeLa ribosomal subunits and nucleolar precursor particles. Exp Cell Res. 1976 Oct 1;102(1):205–212. doi: 10.1016/0014-4827(76)90316-5. [DOI] [PubMed] [Google Scholar]
  37. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  38. Lastick S. M. The assembly of ribosomes in HeLa cell nucleoli. Eur J Biochem. 1980 Dec;113(1):175–182. doi: 10.1111/j.1432-1033.1980.tb06152.x. [DOI] [PubMed] [Google Scholar]
  39. Laval M., Hernandez-Verdun D., Bouteille M. Remnant nucleolar structures and residual RNA synthesis in chick erythrocytes. Exp Cell Res. 1981 Mar;132(1):157–167. doi: 10.1016/0014-4827(81)90092-6. [DOI] [PubMed] [Google Scholar]
  40. Lischwe M. A., Richards R. L., Busch R. K., Busch H. Localization of phosphoprotein C23 to nucleolar structures and to the nucleolus organizer regions. Exp Cell Res. 1981 Nov;136(1):101–109. doi: 10.1016/0014-4827(81)90041-0. [DOI] [PubMed] [Google Scholar]
  41. Martini O. H., Gould H. J. Molecular weight distribution of ribosomal proteins from several vertebrate species. Mol Gen Genet. 1976 Dec 31;142(4):317–331. doi: 10.1007/BF00271255. [DOI] [PubMed] [Google Scholar]
  42. McConkey E. H., Bielka H., Gordon J., Lastick S. M., Lin A., Ogata K., Reboud J. P., Traugh J. A., Traut R. R., Warner J. R. Proposed uniform nomenclature for mammalian ribosomal proteins. Mol Gen Genet. 1979 Jan 16;169(1):1–6. doi: 10.1007/BF00267538. [DOI] [PubMed] [Google Scholar]
  43. Miller O. L., Jr, Beatty B. R. Visualization of nucleolar genes. Science. 1969 May 23;164(3882):955–957. doi: 10.1126/science.164.3882.955. [DOI] [PubMed] [Google Scholar]
  44. Miyachi K., Tan E. M. Antibodies reacting with ribosomal ribonucleoprotein in connective tissue diseases. Arthritis Rheum. 1979 Jan;22(1):87–93. doi: 10.1002/art.1780220114. [DOI] [PubMed] [Google Scholar]
  45. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  46. Ochs R., Lischwe M., O'Leary P., Busch H. Localization of nucleolar phosphoproteins B23 and C23 during mitosis. Exp Cell Res. 1983 Jun;146(1):139–149. doi: 10.1016/0014-4827(83)90332-4. [DOI] [PubMed] [Google Scholar]
  47. Olson M. O., Guetzow K., Busch H. Localization of phosphoprotein C23 in nucleoli by immunological methods. Exp Cell Res. 1981 Oct;135(2):259–265. doi: 10.1016/0014-4827(81)90161-0. [DOI] [PubMed] [Google Scholar]
  48. Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
  49. Phillips D. M., Phillips S. G. Repopulation of postmitotic nucleoli by preformed RNA. II. Ultrastructure. J Cell Biol. 1973 Jul;58(1):54–63. doi: 10.1083/jcb.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Phillips S. G. Repopulation of the postmitotic nucleolus by preformed RNA. J Cell Biol. 1972 Jun;53(3):611–623. doi: 10.1083/jcb.53.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pierandrei-Amaldi P., Beccari E. Messenger RNA for ribosomal proteins in Xenopus laevis oocytes. Eur J Biochem. 1980 May;106(2):603–611. doi: 10.1111/j.1432-1033.1980.tb04608.x. [DOI] [PubMed] [Google Scholar]
  52. Pierandrei-Amaldi P., Campioni N., Beccari E., Bozzoni I., Amaldi F. Expression of ribosomal-protein genes in Xenopus laevis development. Cell. 1982 Aug;30(1):163–171. doi: 10.1016/0092-8674(82)90022-8. [DOI] [PubMed] [Google Scholar]
  53. Prestayko A. W., Klomp G. R., Schmoll D. J., Busch H. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry. 1974 Apr 23;13(9):1945–1951. doi: 10.1021/bi00706a026. [DOI] [PubMed] [Google Scholar]
  54. Scheer U., Rose K. M. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1431–1435. doi: 10.1073/pnas.81.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schmidt-Zachmann M. S., Hügle B., Scheer U., Franke W. W. Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody. Exp Cell Res. 1984 Aug;153(2):327–346. doi: 10.1016/0014-4827(84)90604-9. [DOI] [PubMed] [Google Scholar]
  56. Shepherd J., Maden B. E. Ribosome assembly in Hela cells. Nature. 1972 Mar 31;236(5344):211–214. doi: 10.1038/236211a0. [DOI] [PubMed] [Google Scholar]
  57. Sherton C. C., Wool I. G. A comparison of the proteins of rat skeletal muscle and liver ribosomes by two-dimensional polyacrylamide gel electrophoresis. Observations on the partition of proteins between ribosomal subunits and a description of two acidic proteins in the large subunit. J Biol Chem. 1974 Apr 10;249(7):2258–2267. [PubMed] [Google Scholar]
  58. Sherton C. C., Wool I. G. Determination of the number of proteins in liver ribosomes and ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1972 Jul 25;247(14):4460–4467. [PubMed] [Google Scholar]
  59. Smetana K., Likovsky Z., Busch R. K., Busch H. Further studies on satellite nucleoli in rat and mouse hepatocytes. Exp Cell Res. 1984 Mar;151(1):80–86. doi: 10.1016/0014-4827(84)90357-4. [DOI] [PubMed] [Google Scholar]
  60. Spector D. L., Ochs R. L., Busch H. Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma. 1984;90(2):139–148. doi: 10.1007/BF00292451. [DOI] [PubMed] [Google Scholar]
  61. Subramanian A. R. Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol. 1983;28:101–142. doi: 10.1016/s0079-6603(08)60085-9. [DOI] [PubMed] [Google Scholar]
  62. Suryanarayana T., Subramanian A. R. Function of the repeating homologous sequences in nucleic acid binding domain of ribosomal protein S1. Biochemistry. 1984 Mar 13;23(6):1047–1051. doi: 10.1021/bi00301a002. [DOI] [PubMed] [Google Scholar]
  63. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Todorov I. T., Noll F., Hadjiolov A. A. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells. Eur J Biochem. 1983 Mar 15;131(2):271–275. doi: 10.1111/j.1432-1033.1983.tb07259.x. [DOI] [PubMed] [Google Scholar]
  65. Towbin H., Ramjoué H. P., Kuster H., Liverani D., Gordon J. Monoclonal antibodies against eucaryotic ribosomes. Use to characterize a ribosomal protein not previously identified and antigenically related to the acidic phosphoproteins P1/P2. J Biol Chem. 1982 Nov 10;257(21):12709–12715. [PubMed] [Google Scholar]
  66. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Unuma T., Arendell J. P., Busch H. High resolution autoradiographic studies of the uptake of 3H-5-uridine into condensed and dispersed chromatin of nuclei and granular and fibrillar components of nucleoli of Novikoff hepatoma ascites cells. Exp Cell Res. 1968 Oct;52(2):429–438. doi: 10.1016/0014-4827(68)90484-9. [DOI] [PubMed] [Google Scholar]
  68. Warner J. R. Distribution of newly formed ribosomal proteins in HeLa cell fractions. J Cell Biol. 1979 Mar;80(3):767–772. doi: 10.1083/jcb.80.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zentgraf H., Scheer U., Franke W. W. Characterization and localization of the RNA synthesized in mature avian erythrocytes. Exp Cell Res. 1975 Nov;96(1):81–95. doi: 10.1016/s0014-4827(75)80040-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES