Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Mar 1;100(3):938–946. doi: 10.1083/jcb.100.3.938

Assembly of the sea urchin fertilization membrane: isolation of proteoliaisin, a calcium-dependent ovoperoxidase binding protein

PMCID: PMC2113521  PMID: 3972903

Abstract

Fertilization of the sea urchin egg is accompanied by the assembly of an extracellular glycoprotein coat, the fertilization membrane. Assembly of the fertilization membrane involves exocytosis of egg cortical granules, divalent cation-mediated association of exudate proteins with the egg glycocalyx (the vitelline layer), and cross- linking of the assembled structure by ovoperoxidase, a fertilization membrane component derived from the cortical granules. We have identified and isolated a new protein, which we call proteoliaisin, that appears to be responsible for inserting ovoperoxidase into the fertilization membrane. Proteoliaisin is a 250,000-Mr protein that binds ovoperoxidase in a Ca2+-dependent manner, with half-maximal binding at 50 microM Ca2+. Other divalent cations are less effective (Ba2+, Mn2+, and Sr2+) or ineffective (Mg2+ and Cd2+) in mediating the binding interaction. Binding is optimal over the physiological pH range of fertilization membrane assembly (pH 5.5-7.5). Both proteoliaisin and ovoperoxidase are found in isolated, uncross-linked fertilization membranes. We have identified several macromolecular aggregates that are released from uncross-linked fertilization membranes after dilution into divalent cation-free buffer. One of these is an ovoperoxidase- proteoliaisin complex that is further disrupted only upon the addition of EGTA. These results suggest that a Ca2+-stabilized complex of ovoperoxidase and proteoliaisin forms one structural subunit of the fertilization membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bryan J. On the reconstitution of the crystalline components of the sea urchin fertilization membrane. J Cell Biol. 1970 Jun;45(3):606–614. doi: 10.1083/jcb.45.3.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryan J. The isolation of a major structural element of the sea urchin fertilization membrane. J Cell Biol. 1970 Mar;44(3):635–645. doi: 10.1083/jcb.44.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
  5. Chandler D. E., Heuser J. The vitelline layer of the sea urchin egg and its modification during fertilization. A freeze-fracture study using quick-freezing and deep-etching. J Cell Biol. 1980 Mar;84(3):618–632. doi: 10.1083/jcb.84.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deits T., Farrance M., Kay E. S., Medill L., Turner E. E., Weidman P. J., Shapiro B. M. Purification and properties of ovoperoxidase, the enzyme responsible for hardening the fertilization membrane of the sea urchin egg. J Biol Chem. 1984 Nov 10;259(21):13525–13533. [PubMed] [Google Scholar]
  7. Fodor E. J., Ako H., Walsh K. A. Isolation of a protease from sea urchin eggs before and after fertilization. Biochemistry. 1975 Nov 4;14(22):4923–4927. doi: 10.1021/bi00693a022. [DOI] [PubMed] [Google Scholar]
  8. Foerder C. A., Shapiro B. M. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4214–4218. doi: 10.1073/pnas.74.10.4214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gundersen G. G., Shapiro B. M. Hapten-mediated immunopurification of membrane proteins labeled with fluorescein derivatives. Biochim Biophys Acta. 1984 May 25;799(1):68–79. doi: 10.1016/0304-4165(84)90328-3. [DOI] [PubMed] [Google Scholar]
  10. Hall H. G. Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines. Cell. 1978 Oct;15(2):343–355. doi: 10.1016/0092-8674(78)90003-x. [DOI] [PubMed] [Google Scholar]
  11. Inoue S., Hardy J. P. Fine structure of the fertilization membranes of sea urchin embryos. Exp Cell Res. 1971 Oct;68(2):259–272. doi: 10.1016/0014-4827(71)90150-9. [DOI] [PubMed] [Google Scholar]
  12. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  13. Kane R. E. Hyalin release during normal sea urchin development and its replacement after removal at fertilization. Exp Cell Res. 1973 Oct;81(2):301–311. doi: 10.1016/0014-4827(73)90519-3. [DOI] [PubMed] [Google Scholar]
  14. Kay E., Eddy E. M., Shapiro B. M. Assembly of the fertilization membrane of the sea urchin: isolation of a divalent cation-dependent intermediate and its crosslinking in vitro. Cell. 1982 Jul;29(3):867–875. doi: 10.1016/0092-8674(82)90448-2. [DOI] [PubMed] [Google Scholar]
  15. Klebanoff S. J., Foerder C. A., Eddy E. M., Shapiro B. M. Metabolic similarities between fertilization and phagocytosis. Conservation of a peroxidatic mechanism. J Exp Med. 1979 Apr 1;149(4):938–953. doi: 10.1084/jem.149.4.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. MEHL J. W., SWANN M. M. Acid and base production at fertilization in the sea urchin. Exp Cell Res. 1961 Jan;22:233–245. doi: 10.1016/0014-4827(61)90101-x. [DOI] [PubMed] [Google Scholar]
  18. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  19. Shapiro B. M., Schackmann R. W., Gabel C. A. Molecular approaches to the study of fertilization. Annu Rev Biochem. 1981;50:815–843. doi: 10.1146/annurev.bi.50.070181.004123. [DOI] [PubMed] [Google Scholar]
  20. Talbot C. F., Vacquier V. D. The purification and characterization of an exo-beta (1 going to 3)-glucanohydrolase from sea urchin eggs. J Biol Chem. 1982 Jan 25;257(2):742–746. [PubMed] [Google Scholar]
  21. Veron M., Foerder C., Eddy E. M., Shapiro Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell. 1977 Feb;10(2):321–328. doi: 10.1016/0092-8674(77)90226-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES