Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Mar 1;100(3):721–726. doi: 10.1083/jcb.100.3.721

Fluorescent gangliosides as probes for the retention and organization of fibronectin by ganglioside-deficient mouse cells

PMCID: PMC2113532  PMID: 3882721

Abstract

Ganglioside-deficient transformed mouse fibroblasts (NCTC 2071A cells), which grow in serum-free medium, synthesize fibronectin but do not retain it on the cell surface. When fluorescent derivatives of gangliosides, containing either rhodamine or Lucifer yellow CH attached to the sialic acid residues, were added to the culture medium, the cells incorporated the derivatives and their surfaces became highly fluorescent. When the cells were stained with anti-fibronectin antibodies and a fluorescent second antibody, fibrillar strands of fibronectin were observed to be attached to the cell surface, with partial coincidence of the patterns of direct ganglioside fluorescence and indirect fibronectin immunofluorescence at the cell surface. When the cells were exposed to bacterial neuraminidase during the time of ganglioside insertion, similar patterns of fluorescence were observed. Because the fluorescent gangliosides are resistant to the enzyme, these results suggest that neuraminidase-sensitive endogenous glycoconjugates were not involved in the ganglioside-mediated retention and organization of endogenous fibronectin. After cells were exposed to exogenous chicken fibronectin, most of the fibronectin was attached to the substratum and only a few fibrils were attached to the cells. When exogenous gangliosides were included in the incubation, there was a striking increase in cell-associated exogenous fibronectin, which was highly organized into a fibrillar network. Conversely, cells incubated for 18 h with exogenous unmodified gangliosides exhibited a highly organized network of endogenously derived fibronectin. Upon further incubation of the cells for 2 h with fluorescent gangliosides, there was considerable co-distribution of the fluorescent gangliosides with the fibronectin network as revealed by immunofluorescence. Our results support the concept that gangliosides can mediate the attachment of fibronectin to the cell surface and its organization into a fibrillar network.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aplin J. D., Hughes R. C., Jaffe C. L., Sharon N. Reversible cross-linking of cellular components of adherent fibroblasts to fibronectin and lectin-coated substrata. Exp Cell Res. 1981 Aug;134(2):488–494. doi: 10.1016/0014-4827(81)90453-5. [DOI] [PubMed] [Google Scholar]
  2. Brady R. O., Fishman P. H. Biosynthesis of glycolipids in virus-transformed cells. Biochim Biophys Acta. 1974 Sep 9;355(2):121–148. doi: 10.1016/0304-419x(74)90001-8. [DOI] [PubMed] [Google Scholar]
  3. Fishman P. H., Moss J., Vaughan M. Uptake and metabolism of gangliosides in transformed mouse fibroblasts. Relationship of ganglioside structure to choleragen response. J Biol Chem. 1976 Aug 10;251(15):4490–4494. [PubMed] [Google Scholar]
  4. Grinnell F. Fibroblast receptor for cell-substratum adhesion: studies on the interaction of baby hamster kidney cells with latex beads coated by cold insoluble globulin (plasma fibronectin). J Cell Biol. 1980 Jul;86(1):104–112. doi: 10.1083/jcb.86.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grinnell F., Lang B. R., Phan T. V. Binding of plasma fibronectin to the surfaces of BHK cells in suspension at 4 degrees C. Exp Cell Res. 1982 Dec;142(2):499–504. doi: 10.1016/0014-4827(82)90398-6. [DOI] [PubMed] [Google Scholar]
  6. Holmgren J., Elwing H., Fredman P., Svennerholm L. Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor. Eur J Biochem. 1980 May;106(2):371–379. doi: 10.1111/j.1432-1033.1980.tb04583.x. [DOI] [PubMed] [Google Scholar]
  7. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleinman H. K., Martin G. R., Fishman P. H. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3367–3371. doi: 10.1073/pnas.76.7.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laterra J., Ansbacher R., Culp L. A. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6662–6666. doi: 10.1073/pnas.77.11.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moss J., Fishman P. H., Manganiello V. C., Vaughan M., Brady R. O. Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1034–1037. doi: 10.1073/pnas.73.4.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oppenheimer-Marks N., Grinnell F. Calcium ions protect cell-substratum adhesion receptors against proteolysis. Evidence from immunoabsorption and electroblotting studies. Exp Cell Res. 1984 Jun;152(2):467–475. doi: 10.1016/0014-4827(84)90648-7. [DOI] [PubMed] [Google Scholar]
  12. Oppenheimer-Marks N., Grinnell F. Inhibition of fibronectin receptor function by antibodies against baby hamster kidney cell wheat germ agglutinin receptors. J Cell Biol. 1982 Dec;95(3):876–884. doi: 10.1083/jcb.95.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pena S. D., Hughes R. C. Fibroblast to substratum contacts mediated by the different forms of fibronectin. Cell Biol Int Rep. 1978 Jul;2(4):339–344. doi: 10.1016/0309-1651(78)90019-x. [DOI] [PubMed] [Google Scholar]
  14. Pena S. D., Hughes R. C. Fibronectin-plasma membrane interactions in the adhesion and spreading of hamster fibroblasts. Nature. 1978 Nov 2;276(5683):80–83. doi: 10.1038/276080a0. [DOI] [PubMed] [Google Scholar]
  15. Perkins R. M., Kellie S., Patel B., Critchley D. R. Gangliosides as receptors for fibronectin? Comparison of cell spreading on a ganglioside-specific ligand with that on fibronectin. Exp Cell Res. 1982 Oct;141(2):231–243. doi: 10.1016/0014-4827(82)90211-7. [DOI] [PubMed] [Google Scholar]
  16. Pierschbacher M. D., Ruoslahti E., Sundelin J., Lind P., Peterson P. A. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982 Aug 25;257(16):9593–9597. [PubMed] [Google Scholar]
  17. Pierschbacher M., Hayman E. G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1224–1227. doi: 10.1073/pnas.80.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  19. Rauvala H., Carter W. G., Hakomori S. I. Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J Cell Biol. 1981 Jan;88(1):127–137. doi: 10.1083/jcb.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rossi J. D., Wallace B. A. Binding of fibronectin to phospholipid vesicles. J Biol Chem. 1983 Mar 10;258(5):3327–3331. [PubMed] [Google Scholar]
  21. Ruoslahti E., Engvall E., Hayman E. G. Fibronectin: current concepts of its structure and functions. Coll Relat Res. 1981;1(1):95–128. doi: 10.1016/s0174-173x(80)80011-2. [DOI] [PubMed] [Google Scholar]
  22. Spiegel S., Schlessinger J., Fishman P. H. Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate, and interaction with fibronectin. J Cell Biol. 1984 Aug;99(2):699–704. doi: 10.1083/jcb.99.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spiegel S., Wilchek M., Fishman P. H. Fluorescence labeling of cell surface glycoconjugates with Lucifer yellow CH. Biochem Biophys Res Commun. 1983 May 16;112(3):872–877. doi: 10.1016/0006-291x(83)91698-4. [DOI] [PubMed] [Google Scholar]
  24. Tarone G., Galetto G., Prat M., Comoglio P. M. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins. J Cell Biol. 1982 Jul;94(1):179–186. doi: 10.1083/jcb.94.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilchek M., Spiegel S., Spiegel Y. Fluorescent reagents for the labeling of glycoconjugates in solution and on cell surfaces. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1215–1222. doi: 10.1016/0006-291x(80)90416-7. [DOI] [PubMed] [Google Scholar]
  26. Wylie D. E., Damsky C. H., Buck C. A. Studies on the function of cell surface glycoproteins. I. Use of antisera to surface membranes in the identification of membrane components relevant to cell-substrate adhesion. J Cell Biol. 1979 Feb;80(2):385–402. doi: 10.1083/jcb.80.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamada K. M., Critchley D. R., Fishman P. H., Moss J. Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells. Exp Cell Res. 1983 Feb;143(2):295–302. doi: 10.1016/0014-4827(83)90054-x. [DOI] [PubMed] [Google Scholar]
  28. Yamada K. M. Immunological characterization of a major transformation-sensitive fibroblast cell surface glycoprotein. Localization, redistribution, and role in cell shape. J Cell Biol. 1978 Aug;78(2):520–541. doi: 10.1083/jcb.78.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamada K. M., Kennedy D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 1984 Jul;99(1 Pt 1):29–36. doi: 10.1083/jcb.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamada K. M., Kennedy D. W. Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol. 1979 Feb;80(2):492–498. doi: 10.1083/jcb.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamada K. M., Kennedy D. W., Grotendorst G. R., Momoi T. Glycolipids: receptors for fibronectin? J Cell Physiol. 1981 Nov;109(2):343–351. doi: 10.1002/jcp.1041090218. [DOI] [PubMed] [Google Scholar]
  32. Yamada K. M., Schlesinger D. H., Kennedy D. W., Pastan I. Characterization of a major fibroblast cell surface glycoprotein. Biochemistry. 1977 Dec 13;16(25):5552–5559. doi: 10.1021/bi00644a025. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES