Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2297–2308. doi: 10.1083/jcb.99.6.2297

Qualitative analysis of skeletal myosin as substrate of Ca2+-activated neutral protease: comparison of filamentous and soluble, native, and L2- deficient myosin

PMCID: PMC2113535  PMID: 6094594

Abstract

Ca2+ -activated neutral protease (CAF) was capable of degrading myosin over a 200-fold range of protease concentrations. CAF selected the heavy chain of myosin, although either prolonged exposure to or high concentrations of the protease degraded the L1, but not the L2 or L3, light chains of myosin. The following results indicated that during the first hour of digestion, under conditions where native myosin was the substrate, CAF selected for the "head" region of the myosin heavy chain: (a) large heavy chain fragments of identical molecular weight were produced from filamentous and from soluble myosin; (b) light meromyosin was not a substrate; (c) agents known to bind to the head of myosin (actin, MgATP, and L2) had both a qualitative and quantitative effect on degradation; and (d) similar cleavage sites could be demonstrated for myosin and for heavy meromyosin (HMM) despite the fact that HMM was a much poorer substrate than myosin. This observation is interpreted as an indication that the conformation of myosin heavy chain is altered in the preparation of HMM. The principal cleavage sites on the heavy chain of myosin were 20,000, 35,000 and 50,000 D from the N-terminus, producing large fragments with molecular weights of 180,000, 165,000, and 150,000 which comprised a "nicked" species of myosin. This nicked species retained both normal solubility properties and normal hydrolytic activities. For this reason, it is concluded that "nicked myosin" is an important pathophysiological species.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azanza J. L., Raymond J., Robin J. M., Cottin P., Ducastaing A. Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle. Biochem J. 1979 Nov 1;183(2):339–347. doi: 10.1042/bj1830339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhan A., Malhotra A., Hatcher V. B., Sonnenblick E. H., Scheuer J. Depressed myosin ATPase activity in hearts of myopathic hamsters: dissociation from neutral protease activity. J Mol Cell Cardiol. 1978 Aug;10(8):769–777. doi: 10.1016/0022-2828(78)90410-8. [DOI] [PubMed] [Google Scholar]
  3. Bremel R. D., Weber A. Calcium binding to rabbit skeletal myosin under physiological conditions. Biochim Biophys Acta. 1975 Feb 17;376(2):366–374. doi: 10.1016/0005-2728(75)90028-6. [DOI] [PubMed] [Google Scholar]
  4. Bremel R. D., Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol. 1972 Jul 26;238(82):97–101. doi: 10.1038/newbio238097a0. [DOI] [PubMed] [Google Scholar]
  5. Cardinaud R., Dassin E., Pelletier F. Heterogeneity of subfragment-1 preparations from myofibril digestion by trypsin. Biochem Biophys Res Commun. 1973 Jun 8;52(3):1057–1063. doi: 10.1016/0006-291x(73)91045-0. [DOI] [PubMed] [Google Scholar]
  6. Cardinaud R. Proteolytic fragmentation of myosin: location of SH-1 and SH-2 thiols. Biochimie. 1979;61(7):807–821. doi: 10.1016/s0300-9084(79)80275-8. [DOI] [PubMed] [Google Scholar]
  7. Crow M. T., Kushmerick M. J. Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle. J Biol Chem. 1982 Mar 10;257(5):2121–2124. [PubMed] [Google Scholar]
  8. Daniel J. L., Hartshorne D. J. The reaction of myosin with N-ethylmaleimide in the presence of ADP. Biochim Biophys Acta. 1974 May 22;347(2):151–159. doi: 10.1016/0005-2728(74)90040-1. [DOI] [PubMed] [Google Scholar]
  9. Dayton W. R., Goll D. E., Zeece M. G., Robson R. M., Reville W. J. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 1976 May 18;15(10):2150–2158. doi: 10.1021/bi00655a019. [DOI] [PubMed] [Google Scholar]
  10. Dayton W. R., Reville W. J., Goll D. E., Stromer M. H. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 1976 May 18;15(10):2159–2167. doi: 10.1021/bi00655a020. [DOI] [PubMed] [Google Scholar]
  11. Dayton W. R., Schollmeyer J. V., Lepley R. A., Cortés L. R. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim Biophys Acta. 1981 May 14;659(1):48–61. doi: 10.1016/0005-2744(81)90270-9. [DOI] [PubMed] [Google Scholar]
  12. Gazith J., Himmelfarb S., Harrington W. F. Studies on the subunit structure of myosin. J Biol Chem. 1970 Jan 10;245(1):15–22. [PubMed] [Google Scholar]
  13. Hoh J. Y., McGrath P. A., White R. I. Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J. 1976 Jul 1;157(1):87–95. doi: 10.1042/bj1570087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishiura S., Sugita H., Suzuki K., Imahori K. Studies of a calcium-activated neutral protease from chicken skeletal muscle. II. Substrate specificity. J Biochem. 1979 Aug;86(2):579–581. doi: 10.1093/oxfordjournals.jbchem.a132558. [DOI] [PubMed] [Google Scholar]
  15. Kar N. C., Pearson C. M. A calcium-activated neutral protease in normal and dystrophic human muscle. Clin Chim Acta. 1976 Dec 1;73(2):293–297. doi: 10.1016/0009-8981(76)90175-3. [DOI] [PubMed] [Google Scholar]
  16. Lowey S., Slayter H. S., Weeds A. G., Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969 May 28;42(1):1–29. doi: 10.1016/0022-2836(69)90483-5. [DOI] [PubMed] [Google Scholar]
  17. Manning D. R., Stull J. T. Myosin light chain phosphorylation and phosphorylase A activity in rat extensor digitorum longus muscle. Biochem Biophys Res Commun. 1979 Sep 12;90(1):164–170. doi: 10.1016/0006-291x(79)91604-8. [DOI] [PubMed] [Google Scholar]
  18. Margossian S. S., Stafford W. F., 3rd, Lowey S. Homogeneity of myosin subfragments by equilibrium centrifugation. Biochemistry. 1981 Apr 14;20(8):2151–2155. doi: 10.1021/bi00511a012. [DOI] [PubMed] [Google Scholar]
  19. Mellgren R. L., Repetti A., Muck T. C., Easly J. Rabbit skeletal muscle calcium-dependent protease requiring millimolar CA2+. Purification, subunit structure, and Ca2+-dependent autoproteolysis. J Biol Chem. 1982 Jun 25;257(12):7203–7209. [PubMed] [Google Scholar]
  20. Michnicka M., Kasman K., Kakol I. The binding of actin to phosphorylated and dephosphorylated myosin. Biochim Biophys Acta. 1982 Jun 24;704(3):470–475. doi: 10.1016/0167-4838(82)90069-3. [DOI] [PubMed] [Google Scholar]
  21. Miyanishi T., Inoue A., Tonomura Y. Differential modification of specific lysine residues in the two kinds of subfragment-1 of myosin with 2, 4, 6-trinitrobenzenesulfonate. J Biochem. 1979 Mar;85(3):747–753. [PubMed] [Google Scholar]
  22. Mornet D., Bertrand R. U., Pantel P., Audemard E., Kassab R. Proteolytic approach to structure and function of actin recognition site in myosin heads. Biochemistry. 1981 Apr 14;20(8):2110–2120. doi: 10.1021/bi00511a007. [DOI] [PubMed] [Google Scholar]
  23. Moss R. L., Giulian G. G., Greaser M. L. Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers. J Biol Chem. 1982 Aug 10;257(15):8588–8591. [PubMed] [Google Scholar]
  24. Muhlrad A., Hozumi T. Tryptic digestion as a probe of myosin S-1 conformation. Proc Natl Acad Sci U S A. 1982 Feb;79(4):958–962. doi: 10.1073/pnas.79.4.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pemrick S. M. Comparison of the calcium sensitivity of actomyosin from native and L-2-deficient myosin. Biochemistry. 1977 Sep 6;16(18):4047–4054. doi: 10.1021/bi00637a017. [DOI] [PubMed] [Google Scholar]
  26. Pemrick S. M. Evidence that the actin site is impaired by Ca2+-activated degradation of the heavy chain of dystrophic myosin. Biochem Biophys Res Commun. 1981 Oct 15;102(3):877–894. doi: 10.1016/0006-291x(81)91619-3. [DOI] [PubMed] [Google Scholar]
  27. Pemrick S. M. The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase. J Biol Chem. 1980 Sep 25;255(18):8836–8841. [PubMed] [Google Scholar]
  28. Pemrick S., Weber A. Mechanism of inhibition of relaxation by N-ethylmaleimide treatment of myosin. Biochemistry. 1976 Nov 16;15(23):5193–5198. doi: 10.1021/bi00668a038. [DOI] [PubMed] [Google Scholar]
  29. Pinset-Härström I., Whalen R. G. Effect of ageing of myosin on its ability to form synthetic filaments and on proteolysis of the LC2 light chain. J Mol Biol. 1979 Oct 15;134(1):189–197. doi: 10.1016/0022-2836(79)90420-0. [DOI] [PubMed] [Google Scholar]
  30. Ritz-Gold C. J., Cooke R., Blumenthal D. K., Stull J. T. Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun. 1980 Mar 13;93(1):209–214. doi: 10.1016/s0006-291x(80)80267-1. [DOI] [PubMed] [Google Scholar]
  31. Siemankowski R. F., Dreizen P. Canine cardiac myosin with special referrence to pressure overload cardiac hypertrophy. I. Subunit composition. J Biol Chem. 1978 Dec 10;253(23):8648–8658. [PubMed] [Google Scholar]
  32. Silverman R., Eisenberg E., Kielley W. W. Interaction of SH 1 -blocked HMM with actin and ATP. Nat New Biol. 1972 Dec 13;240(102):207–208. doi: 10.1038/newbio240207a0. [DOI] [PubMed] [Google Scholar]
  33. Stafford W. F., Szent-Györgyi A. G. Physical characterization of myosin light chains. Biochemistry. 1978 Feb 21;17(4):607–614. doi: 10.1021/bi00597a008. [DOI] [PubMed] [Google Scholar]
  34. Sugita H., Ishiura S., Suzuki K., Imahori K. Ca-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils. Muscle Nerve. 1980 Jul-Aug;3(4):335–339. doi: 10.1002/mus.880030410. [DOI] [PubMed] [Google Scholar]
  35. Suzuki K., Tsuji S., Ishiura S., Kimura Y., Kubota S., Imahori K. Autolysis of calcium-activated neutral protease of chicken skeletal muscle. J Biochem. 1981 Dec;90(6):1787–1793. doi: 10.1093/oxfordjournals.jbchem.a133656. [DOI] [PubMed] [Google Scholar]
  36. Suzuki K., Tsuji S., Kubota S., Kimura Y., Imahori K. Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J Biochem. 1981 Jul;90(1):275–278. doi: 10.1093/oxfordjournals.jbchem.a133463. [DOI] [PubMed] [Google Scholar]
  37. Szilagyi L., Balint M., Sreter F. A., Gergely J. Photoaffinity labelling with an ATP analog of the N-terminal peptide of myosin. Biochem Biophys Res Commun. 1979 Apr 13;87(3):936–945. doi: 10.1016/0006-291x(79)92047-3. [DOI] [PubMed] [Google Scholar]
  38. Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
  39. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
  40. Yamamoto K., Sekine T. Substructure of myosin subfragment-1 as revealed by digestion with proteolytic enzymes. J Biochem. 1980 Jan;87(1):219–226. doi: 10.1093/oxfordjournals.jbchem.a132728. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES