Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2193–2199. doi: 10.1083/jcb.99.6.2193

Paramecium secretory granule content: quantitative studies on in vitro expansion and its regulation by calcium and pH

PMCID: PMC2113549  PMID: 6501420

Abstract

Ca2+-dependent secretion in Paramecium involves the exocytic release of a paracrystalline secretory product, the trichocyst matrix, which undergoes a characteristic structural change from a highly condensed storage form (Stage I) to an extended needle-like structure (Stage III) during release. We studied trichocyst matrix expansion in vitro to examine factors regulating the state of secretory organelle content. A new method for the isolation of membrane-free, condensed (Stage I) trichocyst matrices is described. These highly purified, condensed matrices were used to develop a rapid quantitative, spectrophotometric assay for matrix expansion to examine factors regulating the Stage I and Stage III transition. Expansion from Stages I to III was elicited in vitro by addition of Ca2+ and we found that at neutral pH, expansion required a Ca2+ concentration slightly above 10(-6)M. Previous studies indicate that calmodulin (CaM) antagonists inhibit matrix expansion in vivo. However, in vitro matrix expansion is normal even when trichocyst matrices are preincubated in CaM antagonists before stimulation. Thus, matrix components themselves are unlikely to be the site of CaM antagonist action in vivo. In vitro matrix expansion is also modulated by pH. Decreasing pH to 6.0 inhibits expansion, i.e., expansion requires higher Ca2+ concentration. Conversely, increasing pH to greater than 7.0 promotes expansion, allowing it to occur at a lower Ca2+ concentration. The pH sensitivity of the Ca2+ binding sites of the matrix suggests that, in vivo, the interior of the trichocyst vesicle may be maintained at an acidic pH. Exposure of cells to acridine orange, a fluorescent amine that accumulates in acidic intracellular compartments, leads to its uptake and concentration within trichocysts. Thus intratrichocyst pH appears to be acidic in vivo and may serve as a regulatory or "safety" mechanism to inhibit premature expansion.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H., Gylfe E. Demonstration of a proton gradient across the insulin granule membrane. Acta Physiol Scand. 1980 May;109(1):113–114. doi: 10.1111/j.1748-1716.1980.tb06573.x. [DOI] [PubMed] [Google Scholar]
  2. Anderer R., Hausmann K. Properties and structure of isolated extrusive organelles. J Ultrastruct Res. 1977 Jul;60(1):21–26. doi: 10.1016/s0022-5320(77)80037-3. [DOI] [PubMed] [Google Scholar]
  3. Bashford C. L., Radda G. K., Ritchie G. A. Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 1975 Jan 15;50(1):21–24. doi: 10.1016/0014-5793(75)81031-3. [DOI] [PubMed] [Google Scholar]
  4. Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., Satir B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol. 1976 Apr;69(1):126–143. doi: 10.1083/jcb.69.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanchard E. M., Pan B. S., Solaro R. J. The effect of acidic pH on the ATPase activity and troponin Ca2+ binding of rabbit skeletal myofilaments. J Biol Chem. 1984 Mar 10;259(5):3181–3186. [PubMed] [Google Scholar]
  6. Coore H. G., Hellman B., Pihl E., Täljedal I. B. Physicochemical characteristics of insulin secretion granules. Biochem J. 1969 Jan;111(1):107–113. doi: 10.1042/bj1110107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garofalo R. S., Gilligan D. M., Satir B. H. Calmodulin antagonists inhibit secretion in Paramecium. J Cell Biol. 1983 Apr;96(4):1072–1081. doi: 10.1083/jcb.96.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilligan D. M., Satir B. H. Stimulation and inhibition of secretion in Paramecium: role of divalent cations. J Cell Biol. 1983 Jul;97(1):224–234. doi: 10.1083/jcb.97.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hellman B., Gylfe E., Berggren P. O., Andersson T., Abrahamsson H., Rorsman P., Betsholtz C. Ca2+ transport in pancreatic beta-cells during glucose stimulation of insulin secretion. Ups J Med Sci. 1980;85(3):321–329. doi: 10.3109/03009738009179202. [DOI] [PubMed] [Google Scholar]
  10. Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
  11. Holz R. W. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5190–5194. doi: 10.1073/pnas.75.10.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howell S. L., Young D. A., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J Cell Biol. 1969 Apr;41(1):167–176. doi: 10.1083/jcb.41.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. G., Scarpa A. Ion permeability of isolated chromaffin granules. J Gen Physiol. 1976 Dec;68(6):601–631. doi: 10.1085/jgp.68.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  15. Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
  16. Matt H., Plattner H., Reichel K., Lefort-Tran M., Beisson J. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: trigger analyses. J Cell Sci. 1980 Dec;46:41–60. doi: 10.1242/jcs.46.1.41. [DOI] [PubMed] [Google Scholar]
  17. Mori T., Takai Y., Minakuchi R., Yu B., Nishizuka Y. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1980 Sep 25;255(18):8378–8380. [PubMed] [Google Scholar]
  18. Otter T., Satir B. H., Satir P. Trifluoperazine-induced changes in swimming behavior of paramecium: evidence for two sites of drug action. Cell Motil. 1984;4(4):249–267. doi: 10.1002/cm.970040404. [DOI] [PubMed] [Google Scholar]
  19. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  20. Rothman S. S., Burwen S., Liebow C. The zymogen granule: intragranular organization and its functional significance. Adv Cytopharmacol. 1974;2:341–348. [PubMed] [Google Scholar]
  21. Russell J. T., Holz R. W. Measurement of delta pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J Biol Chem. 1981 Jun 25;256(12):5950–5953. [PubMed] [Google Scholar]
  22. Salama G., Johnson R. G., Scarpa A. Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules. J Gen Physiol. 1980 Feb;75(2):109–140. doi: 10.1085/jgp.75.2.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zanini A., Giannattasio G. Molecular organization of rat prolactin secretory granules. Adv Cytopharmacol. 1974;2:329–339. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES