Abstract
Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benya P. D., Nimni M. E. The stability of the collagen phenotype during stimulated collagen, glycosaminoglycan, and DNA synthesis by articular cartilage organ cultures. Arch Biochem Biophys. 1979 Feb;192(2):327–335. doi: 10.1016/0003-9861(79)90100-0. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Padilla S. R., Nimni M. E. The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry. 1977 Mar 8;16(5):865–872. doi: 10.1021/bi00624a009. [DOI] [PubMed] [Google Scholar]
- Clarris B. J., Fraser J. R. On the pericellular zone of some mammalian cells in vitro. Exp Cell Res. 1968 Jan;49(1):181–193. doi: 10.1016/0014-4827(68)90530-2. [DOI] [PubMed] [Google Scholar]
- De Luca S., Caplan A. I., Hascall V. C. Biosynthesis of proteoglycans by chick limb bud chondrocytes. J Biol Chem. 1978 Jul 10;253(13):4713–4720. [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Eisenstein R., Larsson S. E., Sorgente N., Kuettner K. E. Collagen-proteoglycan relationships in epiphyseal cartilage. Am J Pathol. 1973 Nov;73(2):443–456. [PMC free article] [PubMed] [Google Scholar]
- Eisenstein R., Sorgente N., Kuettner K. E. Organization of extracellular matrix in epiphyseal growth plate. Am J Pathol. 1971 Dec;65(3):515–534. [PMC free article] [PubMed] [Google Scholar]
- Farnum C. E., Wilsman N. J. Pericellular matrix of growth plate chondrocytes: a study using postfixation with osmium-ferrocyanide. J Histochem Cytochem. 1983 Jun;31(6):765–775. doi: 10.1177/31.6.6841972. [DOI] [PubMed] [Google Scholar]
- Glössl J., Schubert-Prinz R., Gregory J. D., Damle S. P., von Figura K., Kresse H. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core. Biochem J. 1983 Nov 1;215(2):295–301. doi: 10.1042/bj2150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg R. L., Toole B. P. Hyaluronate coat formation and cell spreading in rat fibrosarcoma cells. Exp Cell Res. 1984 Mar;151(1):258–263. doi: 10.1016/0014-4827(84)90374-4. [DOI] [PubMed] [Google Scholar]
- Goldberg R. L., Toole B. P. Monensin inhibition of hyaluronate synthesis in rat fibrosarcoma cells. J Biol Chem. 1983 Jun 10;258(11):7041–7046. [PubMed] [Google Scholar]
- Handley C. J., Lowther D. A. Inhibition of proteoglycan biosynthesis by hyaluronic acid in chondrocytes in cell culture. Biochim Biophys Acta. 1976 Aug 24;444(1):69–74. doi: 10.1016/0304-4165(76)90224-5. [DOI] [PubMed] [Google Scholar]
- Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
- Kim J. J., Conrad H. E. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1977 Nov 25;252(22):8292–8299. [PubMed] [Google Scholar]
- Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
- Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
- Kjellén L., Pettersson I., Hök M. Cell-surface heparan sulfate: an intercalated membrane proteoglycan. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5371–5375. doi: 10.1073/pnas.78.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraemer P. M. Heparin releases heparan sulfate from the cell surface. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1334–1340. doi: 10.1016/0006-291x(77)91438-3. [DOI] [PubMed] [Google Scholar]
- Kuettner K. E., Memoli V. A., Pauli B. U., Wrobel N. C., Thonar E. J., Daniel J. C. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J Cell Biol. 1982 Jun;93(3):751–757. doi: 10.1083/jcb.93.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Linsenmayer T. F., Gibney E., Little C. D. Type II collagen in the early embryonic chick cornea and vitreous: immunoradiochemical evidence. Exp Eye Res. 1982 Mar;34(3):371–379. doi: 10.1016/0014-4835(82)90083-5. [DOI] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBride W. H., Bard J. B. Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979 Feb 1;149(2):507–515. doi: 10.1084/jem.149.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norling B., Glimelius B., Wasteson A. Heparan sulfate proteoglycan of cultured cells: demonstration of a lipid- and a matrix-associated form. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1265–1272. doi: 10.1016/0006-291x(81)90259-x. [DOI] [PubMed] [Google Scholar]
- Oakes B. W., Handley C. J., Lisner F., Lowther D. A. An ultrastructural and biochemical study of high density primary cultures of embryonic chick chondrocytes. J Embryol Exp Morphol. 1977 Apr;38:239–263. [PubMed] [Google Scholar]
- Oegema T. R., Jr, Thompson R. C., Jr Characterization of a hyaluronic acid-dermatan sulfate proteoglycan complex from dedifferentiated human chondrocyte cultures. J Biol Chem. 1981 Jan 25;256(2):1015–1022. [PubMed] [Google Scholar]
- Ohya T., Kaneko Y. Novel hyaluronidase from streptomyces. Biochim Biophys Acta. 1970 Mar 18;198(3):607–609. doi: 10.1016/0005-2744(70)90139-7. [DOI] [PubMed] [Google Scholar]
- Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
- Poole A. R., Pidoux I., Reiner A., Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol. 1982 Jun;93(3):921–937. doi: 10.1083/jcb.93.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad A. S., DuMouchelle E., Koniuch D., Oberleas D. A simple fluorometric method for the determination of RNA and DNA in tissues. J Lab Clin Med. 1972 Oct;80(4):598–602. [PubMed] [Google Scholar]
- Rapraeger A. C., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteoglycan associates quantitatively with lipid vesicles. J Biol Chem. 1983 Mar 25;258(6):3632–3636. [PubMed] [Google Scholar]
- Rennard S. I., Berg R., Martin G. R., Foidart J. M., Robey P. G. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem. 1980 May 1;104(1):205–214. doi: 10.1016/0003-2697(80)90300-0. [DOI] [PubMed] [Google Scholar]
- Ryser H. J., Morad N., Shen W. C. Heparin interaction with cultured cells: possible role of fibronectin in uncoupling surface binding and endocytosis. Cell Biol Int Rep. 1983 Nov;7(11):923–930. doi: 10.1016/0309-1651(83)90211-4. [DOI] [PubMed] [Google Scholar]
- Solursh M., Hardingham T. E., Hascall V. C., Kimura J. H. Separate effects of exogenous hyaluronic acid on proteoglycan synthesis and deposition in pericellular matrix by cultured chick embryo limb chondrocytes. Dev Biol. 1980 Mar;75(1):121–129. doi: 10.1016/0012-1606(80)90148-7. [DOI] [PubMed] [Google Scholar]
- Solursh M., Meier S. Effects of cell density on the expression of differentiation by chick embryo chondrocytes. J Exp Zool. 1974 Mar;187(3):311–322. doi: 10.1002/jez.1401870302. [DOI] [PubMed] [Google Scholar]
- Sommarin Y., Heinegård D. Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface. Biochem J. 1983 Sep 15;214(3):777–784. doi: 10.1042/bj2140777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underhill C. B., Chi-Rosso G., Toole B. P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J Biol Chem. 1983 Jul 10;258(13):8086–8091. [PubMed] [Google Scholar]
- Underhill C. B., Toole B. P. Binding of hyaluronate to the surface of cultured cells. J Cell Biol. 1979 Aug;82(2):475–484. doi: 10.1083/jcb.82.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underhill C. B., Toole B. P. Physical characteristics of hyaluronate binding to the surface of simian virus 40-transformed 3T3 cells. J Biol Chem. 1980 May 25;255(10):4544–4549. [PubMed] [Google Scholar]
- Underhill C. B., Toole B. P. Transformation-dependent loss of the hyaluronate-containing coats of cultured cells. J Cell Physiol. 1982 Feb;110(2):123–128. doi: 10.1002/jcp.1041100204. [DOI] [PubMed] [Google Scholar]
- Weiss C., Rosenberg L., Helfet A. J. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg Am. 1968 Jun;50(4):663–674. doi: 10.2106/00004623-196850040-00002. [DOI] [PubMed] [Google Scholar]
- Wiebkin O. W., Muir H. The inhibition of sulphate incorporation in isolated adult chondrocytes by hyaluronic acid. FEBS Lett. 1973 Nov 15;37(1):42–46. doi: 10.1016/0014-5793(73)80422-3. [DOI] [PubMed] [Google Scholar]
- von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]
