Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2314–2321. doi: 10.1083/jcb.99.6.2314

SV40 transformation of Swiss 3T3 cells can cause a stable reduction in the calcium requirement for growth

PMCID: PMC2113556  PMID: 6094595

Abstract

A well-characterized SV40-transformed Swiss 3T3 line, SV101, and its revertants were tested for the ability to grow in reduced Ca++ (0.01 mM). Transformants and revertants did not differ from the parent 3T3 line in their Ca++ requirements. All three classes of cells grew less well in low Ca++ than in regular Ca++ (2.0 mM). SV40 transformants were then selected for the ability to grow in reduced Ca++. This new class of transformants was found to grow in 1% serum, grow in soft agarose, have a reorganized actin cytoskeleton, and express viral T antigens, as well as grow well in low Ca++. One of the selected clones was found to be T antigen-negative, yet was transformed in the serum, anchorage, actin, and Ca++ assays. It is possible that this clone was a spontaneous transformant. However, Southern blot analysis revealed the presence of integrated SV40 DNA. In addition, this analysis revealed the absence of an intact early region fragment, which codes for the viral T antigens. One explanation of this result may be that the mechanism of viral transformation for growth in low Ca++ involves viral- host DNA interactions that may not require a fully functional T antigen. In this case SV40 integration may be acting as a nonspecific cellular mutagen.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balk S. D., Whitfield J. F., Youdale T., Braun A. C. Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts. Proc Natl Acad Sci U S A. 1973 Mar;70(3):675–679. doi: 10.1073/pnas.70.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanck G., Chen S., Pollack R. Integration, loss, and reacquisition of defective viral DNA in SV40-transformed mouse cell lines. Virology. 1983 Apr 30;126(2):413–428. doi: 10.1016/s0042-6822(83)80001-4. [DOI] [PubMed] [Google Scholar]
  3. Boynton A. L., Whitfield J. F. Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1651–1654. doi: 10.1073/pnas.73.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boynton A. L., Whitfield J. F., Isaacs R. J. Calcium-dependent stimulation of BALB/c 3T3 mouse cell DNA synthesis by a tumor-promoting phorbol ester (PMA). J Cell Physiol. 1976 Jan;87(1):25–32. doi: 10.1002/jcp.1040870105. [DOI] [PubMed] [Google Scholar]
  5. Boynton A. L., Whitfield J. F., Isaacs R. J. The different roles of serum and calcium in the control of proliferation of BALB/c 3T3 mouse cells. In Vitro. 1976 Feb;12(2):120–123. doi: 10.1007/BF02796358. [DOI] [PubMed] [Google Scholar]
  6. Boynton A. L., Whitfield J. F., Isaacs R. J., Tremblay R. G. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res. 1977 Aug;37(8 Pt 1):2657–2661. [PubMed] [Google Scholar]
  7. Brennan J. K., Mansky J., Roberts G., Lichtman M. A. Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro. 1975 Nov-Dec;11(6):354–360. doi: 10.1007/BF02616371. [DOI] [PubMed] [Google Scholar]
  8. Chafouleas J. G., Pardue R. L., Brinkley B. R., Dedman J. R., Means A. R. Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells. Proc Natl Acad Sci U S A. 1981 Feb;78(2):996–1000. doi: 10.1073/pnas.78.2.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen S., Blanck G., Pollack R. E. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5670–5674. doi: 10.1073/pnas.80.18.5670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen S., Verderame M., Lo A., Pollack R. Nonlytic simian virus 40-specific 100K phosphoprotein is associated with anchorage-independent growth in simian virus 40-transformed and revertant mouse cell lines. Mol Cell Biol. 1981 Nov;1(11):994–1006. doi: 10.1128/mcb.1.11.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  12. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  13. Durkin J. P., Whitfield J. F., MacManus J. P. The role of calmodulin in the proliferation of transformed and phenotypically normal tsASV-infected rat cells. J Cell Physiol. 1983 Jun;115(3):313–319. doi: 10.1002/jcp.1041150315. [DOI] [PubMed] [Google Scholar]
  14. Eilam Y., Szydel N. Calcium transport and cellular distribution in quiescent and serum-stimulated primary cultures of bone cells and skin fibroblasts. J Cell Physiol. 1981 Feb;106(2):225–234. doi: 10.1002/jcp.1041060208. [DOI] [PubMed] [Google Scholar]
  15. Freeman A. E., Black P. H., Wolford R., Huebner R. J. Adenovirus type 12-rat embryo transformation system. J Virol. 1967 Apr;1(2):362–367. doi: 10.1128/jvi.1.2.362-367.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hazelton B. J., Tupper J. T. Calcium transport and exchange in mouse 3T3 and SV40-3T3 cells. J Cell Biol. 1979 Jun;81(3):538–542. doi: 10.1083/jcb.81.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Land H., Parada L. F., Weinberg R. A. Cellular oncogenes and multistep carcinogenesis. Science. 1983 Nov 18;222(4625):771–778. doi: 10.1126/science.6356358. [DOI] [PubMed] [Google Scholar]
  18. Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
  19. MACPHERSON I., MONTAGNIER L. AGAR SUSPENSION CULTURE FOR THE SELECTIVE ASSAY OF CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Jun;23:291–294. doi: 10.1016/0042-6822(64)90301-0. [DOI] [PubMed] [Google Scholar]
  20. Omar R. A., Lanks K. W. Origin of phenotypic variation in clones of simian virus 40-transformed mouse embryo cells. Cancer Res. 1983 Apr;43(4):1835–1841. [PubMed] [Google Scholar]
  21. Paul D., Ristow H. J. Cell cycle control by Ca++-ions in mouse 3T3 cells and in transformed 3T3 cells. J Cell Physiol. 1979 Jan;98(1):31–39. doi: 10.1002/jcp.1040980105. [DOI] [PubMed] [Google Scholar]
  22. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Risser R., Pollack R. A nonselective analysis of SV40 transformation of mouse 3T3 cells. Virology. 1974 Jun;59(2):477–489. doi: 10.1016/0042-6822(74)90457-7. [DOI] [PubMed] [Google Scholar]
  24. Risser R., Rifkin D., Pollack R. The stable classes of transformed cells induced by SV40 infection of established 3T3 cells and primary rat embryonic cells. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):317–324. doi: 10.1101/sqb.1974.039.01.042. [DOI] [PubMed] [Google Scholar]
  25. Ruley H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature. 1983 Aug 18;304(5927):602–606. doi: 10.1038/304602a0. [DOI] [PubMed] [Google Scholar]
  26. Scott M. R., Westphal K. H., Rigby P. W. Activation of mouse genes in transformed cells. Cell. 1983 Sep;34(2):557–567. doi: 10.1016/0092-8674(83)90388-4. [DOI] [PubMed] [Google Scholar]
  27. Shin S. I., Freedman V. H., Risser R., Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4435–4439. doi: 10.1073/pnas.72.11.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  29. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tupper J. T., Zorgniotti F. Calcium content and distribution as a function of growth and transformation in the mouse 3T3 cell. J Cell Biol. 1977 Oct;75(1):12–22. doi: 10.1083/jcb.75.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Verderame M., Alcorta D., Egnor M., Smith K., Pollack R. Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6624–6628. doi: 10.1073/pnas.77.11.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES