Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2279–2286. doi: 10.1083/jcb.99.6.2279

Expression of specific keratin markers by rabbit corneal, conjunctival, and esophageal epithelia during vitamin A deficiency

PMCID: PMC2113571  PMID: 6209290

Abstract

Using an in vivo rabbit model system, we have studied the morphological and biochemical changes in corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Light and electron microscopy showed that the three epithelia undergo different degrees of morphological keratinization. Corneal and conjunctival epithelia became heavily keratinized, forming multiple layers of superficial, anucleated cornified cells. In contrast, esophageal epithelium underwent only minor morphological changes. To correlate morphological alterations with the expression of specific keratin molecules, we have analyzed the keratins from these epithelia by the immunoblot technique using the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies. The results indicate that during vitamin A deficiency, all three epithelia express an AE1-reactive, acidic 56.5-kd keratin and an AE3-reactive, basic 65-67-kd keratin. Furthermore, the expression of these two keratins correlated roughly with the degree of morphological keratinization. AE2 antibody (specific for the 56.5- and 65-67-kd keratins) stained keratinized corneal epithelial sections suprabasally, as in the epidermis, suggesting that these two keratins are expressed mainly during advanced stages of keratinization. These two keratins have previously been suggested to represent markers for epidermal keratinization. Our present data indicate that they can also be expressed by other stratified epithelia during vitamin A deficiency- induced keratinization, and suggest the possibility that they may play a role in the formation of the densely packed tonofilament bundles in cornified cells of keratinized tissues.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Khalek L. M., Williamson J., Lee W. R. Morphological changes in the human conjunctival epithelium. II. In keratoconjunctivitis sicca. Br J Ophthalmol. 1978 Nov;62(11):800–806. doi: 10.1136/bjo.62.11.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bearman R. M., Levine G. D., Bensch K. G. The ultrastructure of the normal human thymus: a study of 36 cases. Anat Rec. 1978 Mar;190(3):755–781. doi: 10.1002/ar.1091900310. [DOI] [PubMed] [Google Scholar]
  3. Bollag W., Matter A. From vitamin A to retinoids in experimental and clinical oncology: achievements, failures, and outlook. Ann N Y Acad Sci. 1981 Feb 27;359:9–23. doi: 10.1111/j.1749-6632.1981.tb12733.x. [DOI] [PubMed] [Google Scholar]
  4. Collin H. B., Donshik P. C., Foster C. S., Boruchoff S. A., Cavanagh H. D. Keratinization of the bulbar conjunctival epithelium in superior limbic keratoconjunctivitis in humans. An electron microscopic study. Acta Ophthalmol (Copenh) 1978;56(4):531–543. doi: 10.1111/j.1755-3768.1978.tb01366.x. [DOI] [PubMed] [Google Scholar]
  5. Doran T. I., Vidrich A., Sun T. T. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell. 1980 Nov;22(1 Pt 1):17–25. doi: 10.1016/0092-8674(80)90150-6. [DOI] [PubMed] [Google Scholar]
  6. Eichner R., Bonitz P., Sun T. T. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol. 1984 Apr;98(4):1388–1396. doi: 10.1083/jcb.98.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elias P. M. Epidermal lipids, membranes, and keratinization. Int J Dermatol. 1981 Jan-Feb;20(1):1–19. doi: 10.1111/j.1365-4362.1981.tb05278.x. [DOI] [PubMed] [Google Scholar]
  8. Elias P. M., Williams M. L. Retinoids, cancer, and the skin. Arch Dermatol. 1981 Mar;117(3):160–168. [PubMed] [Google Scholar]
  9. Epstein W. L., Maibach H. I. Cell renewal in human epidermis. Arch Dermatol. 1965 Oct;92(4):462–468. [PubMed] [Google Scholar]
  10. FELL H. B., MELLANBY E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol. 1953 Mar;119(4):470–488. doi: 10.1113/jphysiol.1953.sp004860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franke W. W., Appelhans B., Schmid E., Freudenstein C., Osborn M., Weber K. Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin. Differentiation. 1979;15(1):7–25. doi: 10.1111/j.1432-0436.1979.tb01030.x. [DOI] [PubMed] [Google Scholar]
  12. Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
  14. Fuchs E., Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981 Sep;25(3):617–625. doi: 10.1016/0092-8674(81)90169-0. [DOI] [PubMed] [Google Scholar]
  15. Fuchs E., Green H. The expression of keratin genes in epidermis and cultured epidermal cells. Cell. 1978 Nov;15(3):887–897. doi: 10.1016/0092-8674(78)90273-8. [DOI] [PubMed] [Google Scholar]
  16. GIROUD A., LEBLOND C. P. The keratinization of epidermis and its derivatives, especially the hair, as shown by x-ray diffraction and histochemical studies. Ann N Y Acad Sci. 1951 Mar;53(3):613–626. doi: 10.1111/j.1749-6632.1951.tb31963.x. [DOI] [PubMed] [Google Scholar]
  17. Green H., Fuchs E., Watt F. Differentiated structural components of the keratinocyte. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):293–301. doi: 10.1101/sqb.1982.046.01.031. [DOI] [PubMed] [Google Scholar]
  18. Green H., Watt F. M. Regulation by vitamin A of envelope cross-linking in cultured keratinocytes derived from different human epithelia. Mol Cell Biol. 1982 Sep;2(9):1115–1117. doi: 10.1128/mcb.2.9.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hicks R. M. Hyperplasia and cornification of the transitional epithelium in the vitamin A-deficient rat. Changes in fine structure of the cells. J Ultrastruct Res. 1968 Feb;22(3):206–230. doi: 10.1016/s0022-5320(68)90016-6. [DOI] [PubMed] [Google Scholar]
  20. Hicks R. M. The scientific basis for regarding vitamin A and its analogues as anti-carcinogenic agents. Proc Nutr Soc. 1983 Jan;42(1):83–93. doi: 10.1079/pns19830010. [DOI] [PubMed] [Google Scholar]
  21. Kinoshita S., Friend J., Kiorpes T. C., Thoft R. A. Keratin-like proteins in corneal and conjunctival epithelium are different. Invest Ophthalmol Vis Sci. 1983 May;24(5):577–581. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lavker R. M., Sun T. T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science. 1982 Mar 5;215(4537):1239–1241. doi: 10.1126/science.7058342. [DOI] [PubMed] [Google Scholar]
  24. Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta. 1980 Mar 12;605(1):33–91. doi: 10.1016/0304-419x(80)90021-9. [DOI] [PubMed] [Google Scholar]
  25. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  26. Moll R., Levy R., Czernobilsky B., Hohlweg-Majert P., Dallenbach-Hellweg G., Franke W. W. Cytokeratins of normal epithelia and some neoplasms of the female genital tract. Lab Invest. 1983 Nov;49(5):599–610. [PubMed] [Google Scholar]
  27. Nelson W. G., Battifora H., Santana H., Sun T. T. Specific keratins as molecular markers for neoplasms with a stratified epithelial origin. Cancer Res. 1984 Apr;44(4):1600–1603. [PubMed] [Google Scholar]
  28. Nelson W. G., Sun T. T. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol. 1983 Jul;97(1):244–251. doi: 10.1083/jcb.97.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Odland G. F., Holbrook K. The lamellar granules of epidermis. Curr Probl Dermatol. 1981;9:29–49. doi: 10.1159/000403343. [DOI] [PubMed] [Google Scholar]
  30. Penneys N. S., Fulton J. E., Jr, Weinstein G. D., Frost P. Location of proliferating cells in human epidermis. Arch Dermatol. 1970 Mar;101(3):323–327. [PubMed] [Google Scholar]
  31. Potten C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 1974 Jan;7(1):77–88. doi: 10.1111/j.1365-2184.1974.tb00401.x. [DOI] [PubMed] [Google Scholar]
  32. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  33. Saffiotti U., Montesano R., Sellakumar A. R., Borg S. A. Experimental cancer of the lung. Inhibition by vitamin A of the induction of tracheobronchial squamous metaplasia and squamous cell tumors. Cancer. 1967 May;20(5):857–864. doi: 10.1002/1097-0142(1967)20:5<857::aid-cncr2820200545>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  34. Schiller D. L., Franke W. W., Geiger B. A subfamily of relatively large and basic cytokeratin polypeptides as defined by peptide mapping is represented by one or several polypeptides in epithelial cells. EMBO J. 1982;1(6):761–769. doi: 10.1002/j.1460-2075.1982.tb01243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schweizer J., Kinjo M., Fürstenberger G., Winter H. Sequential expression of mRNA-encoded keratin sets in neonatal mouse epidermis: basal cells with properties of terminally differentiating cells. Cell. 1984 May;37(1):159–170. doi: 10.1016/0092-8674(84)90311-8. [DOI] [PubMed] [Google Scholar]
  36. Skerrow D., Skerrow C. J. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations. Exp Cell Res. 1983 Jan;143(1):27–35. doi: 10.1016/0014-4827(83)90105-2. [DOI] [PubMed] [Google Scholar]
  37. Steinert P. M., Cantieri J. S., Teller D. C., Lonsdale-Eccles J. D., Dale B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4097–4101. doi: 10.1073/pnas.78.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sun T. T., Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976 Dec;9(4 Pt 1):511–521. doi: 10.1016/0092-8674(76)90033-7. [DOI] [PubMed] [Google Scholar]
  39. Sun T. T., Green H. Immunofluorescent staining of keratin fibers in cultured cells. Cell. 1978 Jul;14(3):469–476. doi: 10.1016/0092-8674(78)90233-7. [DOI] [PubMed] [Google Scholar]
  40. Sun T. T., Shih C., Green H. Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2813–2817. doi: 10.1073/pnas.76.6.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tseng S. C., Jarvinen M. J., Nelson W. G., Huang J. W., Woodcock-Mitchell J., Sun T. T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982 Sep;30(2):361–372. doi: 10.1016/0092-8674(82)90234-3. [DOI] [PubMed] [Google Scholar]
  43. Van Horn D. L., DeCarlo J. D., Schutten W. H., Hyndiuk R. A. Topical retinoic acid in the treatment of experimental xerophthalmia in the rabbit. Arch Ophthalmol. 1981 Feb;99(2):317–321. doi: 10.1001/archopht.1981.03930010319021. [DOI] [PubMed] [Google Scholar]
  44. Van Horn D. L., Schutten W. H., Hyndiuk R. A., Kurz P. Xerophthalmia in vitamin A-deficient rabbits. Clinical and ultrastructural alterations in the cornea. Invest Ophthalmol Vis Sci. 1980 Sep;19(9):1067–1079. [PubMed] [Google Scholar]
  45. Weber F. Biochemical mechanisms of vitamin A action. Proc Nutr Soc. 1983 Jan;42(1):31–41. doi: 10.1079/pns19830005. [DOI] [PubMed] [Google Scholar]
  46. Weiss R. A., Eichner R., Sun T. T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol. 1984 Apr;98(4):1397–1406. doi: 10.1083/jcb.98.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiss R. A., Guillet G. Y., Freedberg I. M., Farmer E. R., Small E. A., Weiss M. M., Sun T. T. The use of monoclonal antibody to keratin in human epidermal disease: alterations in immunohistochemical staining pattern. J Invest Dermatol. 1983 Sep;81(3):224–230. doi: 10.1111/1523-1747.ep12518198. [DOI] [PubMed] [Google Scholar]
  48. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zile M. H., Cullum M. E. The function of vitamin A: current concepts. Proc Soc Exp Biol Med. 1983 Feb;172(2):139–152. doi: 10.3181/00379727-172-41537. [DOI] [PubMed] [Google Scholar]
  50. van Neste D., Staquet M. J., Viac J., Lachapelle J. M., Thivolet J. A new way to evaluate the germinative compartment in human epidermis, using [3H]thymidine incorporation and immunoperoxidase staining of 67 K polypeptide. Br J Dermatol. 1983 Apr;108(4):433–439. doi: 10.1111/j.1365-2133.1983.tb04595.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES