Abstract
In a previous study, using co-cultures of embryonic bone rudiments stripped of periosteum, and mononuclear phagocytes of various sources, we found that multinucleated mineral-resorbing osteoclasts developed in vitro from radiosensitive mouse bone marrow mononuclear phagocytes (BMMP). (Burger, E. H., J. W. M. van der Meer, J. S. van de Gevel, C. W. Thesingh, and R. van Furth, 1982, J. Exp. Med. 156:1604-1614). In the present study, this co-culture technique was used to analyze the influence of bone-forming cells on osteoclast formation and bone resorption by BMMP or peritoneal exudate cells (PEC). BMMP or PEC were co-cultured with liver or dead bone, i.e., in the presence or absence of liver bone-forming cells. Mineral resorption and osteoclast formation were monitored via 45Ca release from prelabeled live or dead bone followed by histology. Osteoclasts developed from precultured BMMP as indicated by [3H]thymidine labeling, but only in live and not in dead bone. They formed readily from BMMP but only erratically, and after a longer culture period, from PEC. Macrophages from BMMP and PEC invaded live and dead bone rudiments but did not resorb the intact mineralized matrix. In contrast, ground bone powder was resorbed avidly by both cell populations, without formation of osteoclasts. We conclude that live bone-forming cells are required for osteoclast formation from progenitors. Live bone is only resorbed by osteoclasts, and not by macrophages. Osteoclast progenitors are abundant in cultures of BMMP but scarce in PEC, which makes a direct descendance of osteoclasts from mature macrophages unlikely.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burger E. H., Van der Meer J. W., van de Gevel J. S., Gribnau J. C., Thesingh G. W., van Furth R. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med. 1982 Dec 1;156(6):1604–1614. doi: 10.1084/jem.156.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
- FISCHMAN D. A., HAY E. D. Origin of osteoclasts from mononuclear leucocytes in regenerating newt limbs. Anat Rec. 1962 Aug;143:329–337. doi: 10.1002/ar.1091430402. [DOI] [PubMed] [Google Scholar]
- Göthlin G., Ericsson J. L. On the histogenesis of the cells in fracture callus. Electron microscopic autoradiographic observations in parabiotic rats and studies on labeled monocytes. Virchows Arch B Cell Pathol. 1973 Mar 30;12(4):318–329. [PubMed] [Google Scholar]
- Howard G. A., Bottemiller B. L., Turner R. T., Rader J. I., Baylink D. J. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci U S A. 1981 May;78(5):3204–3208. doi: 10.1073/pnas.78.5.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaworski Z. F., Duck B., Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981 Oct;133(Pt 3):397–405. [PMC free article] [PubMed] [Google Scholar]
- Jotereau F. V., Le Douarin N. M. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev Biol. 1978 Apr;63(2):253–265. doi: 10.1016/0012-1606(78)90132-x. [DOI] [PubMed] [Google Scholar]
- Kahn A. J., Simmons D. J. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature. 1975 Nov 27;258(5533):325–327. doi: 10.1038/258325a0. [DOI] [PubMed] [Google Scholar]
- Kahn A. J., Stewart C. C., Teitelbaum S. L. Contact-mediated bone resorption by human monocytes in vitro. Science. 1978 Mar 3;199(4332):988–990. doi: 10.1126/science.622581. [DOI] [PubMed] [Google Scholar]
- Luk S. C., Nopajaroonsri C., Simon G. T. The ultrastructure of endosteum: a topographic study in young adult rabbits. J Ultrastruct Res. 1974 Feb;46(2):165–183. doi: 10.1016/s0022-5320(74)80054-7. [DOI] [PubMed] [Google Scholar]
- Marks S. C., Jr The origin of osteoclasts: evidence, clinical implications and investigative challenges of an extra-skeletal source. J Oral Pathol. 1983 Aug;12(4):226–256. doi: 10.1111/j.1600-0714.1983.tb00337.x. [DOI] [PubMed] [Google Scholar]
- McArthur W., Yaari A. M., Shapiro I. M. Bone solubilization by mononuclear cells. Lab Invest. 1980 Apr;42(4):450–456. [PubMed] [Google Scholar]
- Mundy C. R., Altman A. J., Gondek M. D., Bandelin J. G. Direct resorption of bone by human monocytes. Science. 1977 Jun 3;196(4294):1109–1111. doi: 10.1126/science.16343. [DOI] [PubMed] [Google Scholar]
- Page R. C., Schroeder H. E. Current status of the host response in chronic marginal periodontitis. J Periodontol. 1981 Sep;52(9):477–491. doi: 10.1902/jop.1981.52.9.477. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M. Quantum concept of bone remodeling and turnover: implications for the pathogenesis of osteoporosis. Calcif Tissue Int. 1979 Aug 24;28(1):1–5. doi: 10.1007/BF02441211. [DOI] [PubMed] [Google Scholar]
- Rifkin B. R., Baker R. L., Coleman S. J. An ultrastructural study of macrophage-mediated resorption of calcified tissue. Cell Tissue Res. 1979 Oct 2;202(1):125–132. doi: 10.1007/BF00239225. [DOI] [PubMed] [Google Scholar]
- Rodan G. A., Martin T. J. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–351. doi: 10.1007/BF02409454. [DOI] [PubMed] [Google Scholar]
- Teitelbaum S. L., Stewart C. C., Kahn A. J. Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int. 1979 Jul 3;27(3):255–261. doi: 10.1007/BF02441194. [DOI] [PubMed] [Google Scholar]
- Thesingh C. W., Burger E. H. The role of mesenchyme in embryonic long bones as early deposition site for osteoclast progenitor cells. Dev Biol. 1983 Feb;95(2):429–438. doi: 10.1016/0012-1606(83)90044-1. [DOI] [PubMed] [Google Scholar]
- Tinkler S. M., Williams D. M., Linder J. E., Johnson N. W. Kinetics of osteoclast formation: the significance of blood monocytes as osteoclast precursors during 1 alpha-hydroxycholecalciferol-stimulated bone resorption in the mouse. J Anat. 1983 Sep;137(Pt 2):335–340. [PMC free article] [PubMed] [Google Scholar]
- Tran Van P. T., Vignery A., Baron R. Cellular kinetics of the bone remodeling sequence in the rat. Anat Rec. 1982 Apr;202(4):445–451. doi: 10.1002/ar.1092020403. [DOI] [PubMed] [Google Scholar]
- Van Furth R., Diesselhoff-den Dulk M. C., Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med. 1973 Dec 1;138(6):1314–1330. doi: 10.1084/jem.138.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Furth R., van der Meer J. W., Toivonen H., Rytömaa T. Kinetic analysis of the growth of bone marrow mononuclear phagocytes in long-term cultures. J Reticuloendothel Soc. 1983 Sep;34(3):227–234. [PubMed] [Google Scholar]
- van der Meer J. W., van de Gevel J. S., van Furth R. Characteristics of long-term cultures of proliferating, mononuclear phagocytes from bone marrow. J Reticuloendothel Soc. 1983 Sep;34(3):203–225. [PubMed] [Google Scholar]