Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2287–2296. doi: 10.1083/jcb.99.6.2287

MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules

PMCID: PMC2113581  PMID: 6501426

Abstract

The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9- micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified MAP 4 or tubulin antibodies, and the immunofluorescent images were compared. Tubulin antibody labeling showed distinct microtubules in all tissues examined. MAP 4 antibody also labeled microtubule-like patterns, but the extent of MAP 4 reactivity was cell type-specific within each tissue. MAP 4 antibody labeled microtubules in vascular elements of all tissues and in other cells considered to have supportive functions, including Sertoli cells in the testis and glial elements in the nervous system. Microtubule patterns were also observed in cardiac, smooth, and skeletal (eye) muscle, podocytes in kidney, Kuppfer cells in liver, and spermatid manchettes. The only MAP 4-positive cells in which the pattern was not microtubule-like were the principal cells of the collecting ducts in kidney cortex, in which diffuse fluorescence was seen. MAP 4 antibody did not react with microtubule-rich neuronal elements of the central and peripheral nervous system, skeletal muscle from anterior thigh, liver parenchymal cells, columnar epithelial cells of the small intestine, and absorptive cells of the tubular component of the nephron. These observations indicate that MAP 4 may be associated with only certain kinds of cell functions as demonstrated by the preferential distribution with microtubules of defined cell types.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom G. S., Luca F. C., Vallee R. B. Widespread cellular distribution of MAP-1A (microtubule-associated protein 1A) in the mitotic spindle and on interphase microtubules. J Cell Biol. 1984 Jan;98(1):331–340. doi: 10.1083/jcb.98.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom G. S., Schoenfeld T. A., Vallee R. B. Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system. J Cell Biol. 1984 Jan;98(1):320–330. doi: 10.1083/jcb.98.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bulinski J. C., Borisy G. G. Widespread distribution of a 210,000 mol wt microtubule-associated protein in cells and tissues of primates. J Cell Biol. 1980 Dec;87(3 Pt 1):802–808. doi: 10.1083/jcb.87.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgoyne R. D., Cumming R. Characterisation of microtubule-associated proteins at the synapse: absence of MAP 2. Eur J Cell Biol. 1983 May;30(2):154–158. [PubMed] [Google Scholar]
  5. Caceres A., Payne M. R., Binder L. I., Steward O. Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1738–1742. doi: 10.1073/pnas.80.6.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2437–2440. doi: 10.1073/pnas.74.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence. J Cell Biol. 1978 Mar;76(3):781–786. doi: 10.1083/jcb.76.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Brabander M., Bulinski J. C., Geuens G., De Mey J., Borisy G. G. Immunoelectron microscopic localization of the 210,000-mol wt microtubule-associated protein in cultured cells of primates. J Cell Biol. 1981 Nov;91(2 Pt 1):438–445. doi: 10.1083/jcb.91.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein M. A., Entman M. L. Microtubules in mammalian heart muscle. J Cell Biol. 1979 Jan;80(1):183–195. doi: 10.1083/jcb.80.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huber G., Matus A. Immunocytochemical localization of microtubule-associated protein 1 in rat cerebellum using monoclonal antibodies. J Cell Biol. 1984 Feb;98(2):777–781. doi: 10.1083/jcb.98.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Izant J. G., McIntosh J. R. Microtubule-associated proteins: a monoclonal antibody to MAP2 binds to differentiated neurons. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4741–4745. doi: 10.1073/pnas.77.8.4741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Izant J. G., Weatherbee J. A., McIntosh J. R. A microtubule-associated protein antigen unique to mitotic spindle microtubules in PtK1 cells. J Cell Biol. 1983 Feb;96(2):424–434. doi: 10.1083/jcb.96.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matus A., Bernhardt R., Hugh-Jones T. High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proc Natl Acad Sci U S A. 1981 May;78(5):3010–3014. doi: 10.1073/pnas.78.5.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McIntosh J. R., Porter K. R. Microtubules in the spermatids of the domestic fowl. J Cell Biol. 1967 Oct;35(1):153–173. doi: 10.1083/jcb.35.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  16. Parysek L. M., Asnes C. F., Olmsted J. B. MAP 4: occurrence in mouse tissues. J Cell Biol. 1984 Oct;99(4 Pt 1):1309–1315. doi: 10.1083/jcb.99.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reaven E. P., Reaven G. M. Distribution and content of microtubules in relation to the transport of lipid. An ultrastructural quantitative study of the absorptive cell of the small intestine. J Cell Biol. 1977 Nov;75(2 Pt 1):559–572. doi: 10.1083/jcb.75.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sherline P., Schiavone K. Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science. 1977 Dec 9;198(4321):1038–1040. doi: 10.1126/science.337490. [DOI] [PubMed] [Google Scholar]
  19. Sheterline P. Localisation of the major high-molecular-weight protein on microtubules in vitro and in cultured cells. Exp Cell Res. 1978 Sep;115(2):460–464. doi: 10.1016/0014-4827(78)90310-5. [DOI] [PubMed] [Google Scholar]
  20. Singh A., Le Marchand Y., Orci L., Jeanrenaud B. Colchicine administration to mice: a metabolic and ultrastructural study. Eur J Clin Invest. 1975 Nov 21;5(6):495–505. doi: 10.1111/j.1365-2362.1975.tb00482.x. [DOI] [PubMed] [Google Scholar]
  21. Sloboda R. D., Dickersin K. Structure and composition of the cytoskeleton of nucleated erythrocytes I. The presence of microtubule-associated protein 2 in the marginal band. J Cell Biol. 1980 Oct;87(1):170–179. doi: 10.1083/jcb.87.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES