Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268

The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes

PMCID: PMC2113583  PMID: 6438115

Abstract

The topographical relationship between stress fiber-like structures (SFLS) and nascent myofibrils was examined in cultured chick cardiac myocytes by immunofluorescence microscopy. Antibodies against muscle- specific light meromyosin (anti-LMM) and desmin were used to distinguish cardiac myocytes from fibroblastic cells. By various combinations of staining with rhodamine-labeled phalloidin, anti-LMM, and antibodies against chick brain myosin and smooth muscle alpha- actinin, we observed the following relationships between transitory SFLS and nascent and mature myofibrils: (a) more SFLS were present in immature than mature myocytes; (b) in immature myocytes a single fluorescent fiber would stain as a SFLS distally and as a striated myofibril proximally, towards the center of the cell; (c) in regions of a myocyte not yet penetrated by the elongating myofibrils, SFLS were abundant; and (d) in regions of a myocyte with numerous mature myofibrils, SFLS had totally disappeared. Spontaneously contracting striated myofibrils with definitive Z-band regions were present long before anti-desmin localized in the I-Z-band region and long before morphologically recognizable structures periodically link Z-bands to the sarcolemma. These results suggest a transient one-on-one relationship between individual SFLS and newly emerging individual nascent myofibrils. Based on these and other relevant data, a complex, multistage molecular model is presented for myofibrillar assembly and maturation. Lastly, it is of considerable theoretical interest to note that mature cardiac myocytes, like mature skeletal myotubes, lack readily detectable stress fibers.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antin P. B., Forry-Schaudies S., Friedman T. M., Tapscott S. J., Holtzer H. Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J Cell Biol. 1981 Aug;90(2):300–308. doi: 10.1083/jcb.90.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett G. S., Fellini S. A., Holtzer H. Immunofluorescent visualization of 100 A filaments in different cultured chick embryo cell types. Differentiation. 1978;12(2):71–82. doi: 10.1111/j.1432-0436.1979.tb00992.x. [DOI] [PubMed] [Google Scholar]
  3. Bennett G. S., Fellini S. A., Toyama Y., Holtzer H. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J Cell Biol. 1979 Aug;82(2):577–584. doi: 10.1083/jcb.82.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chi J. C., Fellini S. A., Holtzer H. Differences among myosins synthesized in non-myogenic cells, presumptive myoblasts, and myoblasts. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4999–5003. doi: 10.1073/pnas.72.12.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark W. A., Jr Selective control of fibroblast proliferation and its effect on cardiac muscle differentiation in vitro. Dev Biol. 1976 Sep;52(2):263–282. doi: 10.1016/0012-1606(76)90245-1. [DOI] [PubMed] [Google Scholar]
  6. Claycomb W. C., Bradshaw H. D., Jr Acquisition of multiple nuclei and the activity of DNA polymerase alpha and reinitiation of DNA replication in terminally differentiated adult cardiac muscle cells in culture. Dev Biol. 1983 Oct;99(2):331–337. doi: 10.1016/0012-1606(83)90283-x. [DOI] [PubMed] [Google Scholar]
  7. Craig S. W., Pardo J. V. alpha-Actinin localization in the junctional complex of intestinal epithelial cells. J Cell Biol. 1979 Jan;80(1):203–210. doi: 10.1083/jcb.80.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crisona N. J., Strohman R. C. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate-filament proteins. J Cell Biol. 1983 Mar;96(3):684–692. doi: 10.1083/jcb.96.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
  10. Croop J., Holtzer H. Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol. 1975 May;65(2):271–285. doi: 10.1083/jcb.65.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Croop J., Toyama Y., Dlugosz A. A., Holtzer H. Selective effects of phorbol 12-myristate 13-acetate on myofibrils and 10-nm filaments. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5273–5277. doi: 10.1073/pnas.77.9.5273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dlugosz A. A., Tapscott S. J., Holtzer H. Effects of phorbol 12-myristate 13-acetate on the differentiation program of embryonic chick skeletal myoblasts. Cancer Res. 1983 Jun;43(6):2780–2789. [PubMed] [Google Scholar]
  13. Fallon J. R., Nachmias V. T. Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence. J Cell Biol. 1980 Oct;87(1):237–247. doi: 10.1083/jcb.87.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fellini S. A., Bennett G. S., Holtzer H. Selective binding of antibody against gizzard 10-nm filaments to different cell types in myogenic cultures. Am J Anat. 1978 Nov;153(3):451–457. doi: 10.1002/aja.1001530308. [DOI] [PubMed] [Google Scholar]
  15. Fischman D. A. The synthesis and assembly of myofibrils in embryonic muscle. Curr Top Dev Biol. 1970;5:235–280. doi: 10.1016/s0070-2153(08)60057-5. [DOI] [PubMed] [Google Scholar]
  16. Gard D. L., Lazarides E. The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell. 1980 Jan;19(1):263–275. doi: 10.1016/0092-8674(80)90408-0. [DOI] [PubMed] [Google Scholar]
  17. Glacy S. D. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J Cell Biol. 1983 Oct;97(4):1207–1213. doi: 10.1083/jcb.97.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gordon D. J., Yang Y. Z., Korn E. D. Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. J Biol Chem. 1976 Dec 10;251(23):7474–7479. [PubMed] [Google Scholar]
  19. Gordon W. E., 3rd, Bushnell A. Immunofluorescent and ultrastructural studies of polygonal microfilament networks in respreading non-muscle cells. Exp Cell Res. 1979 May;120(2):335–348. doi: 10.1016/0014-4827(79)90393-8. [DOI] [PubMed] [Google Scholar]
  20. Gordon W. E., 3rd Immunofluorescent and ultrastructural studies of "sarcomeric" units in stress fibers of cultured non-muscle cells. Exp Cell Res. 1978 Dec;117(2):253–260. doi: 10.1016/0014-4827(78)90138-6. [DOI] [PubMed] [Google Scholar]
  21. Gunning P., Ponte P., Kedes L., Hickey R. J., Skoultchi A. I. Expression of human cardiac actin in mouse L cells: a sarcomeric actin associates with a nonmuscle cytoskeleton. Cell. 1984 Mar;36(3):709–715. doi: 10.1016/0092-8674(84)90351-9. [DOI] [PubMed] [Google Scholar]
  22. HOLTZER H., MARSHALL J. M., Jr, FINCK H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957 Sep 25;3(5):705–724. doi: 10.1083/jcb.3.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heggeness M. H., Wang K., Singer S. J. Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3883–3887. doi: 10.1073/pnas.74.9.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holtzer H., Croop J., Dienstman S., Ishikawa H., Somlyo A. P. Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci U S A. 1975 Feb;72(2):513–517. doi: 10.1073/pnas.72.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  27. Kreis T. E., Birchmeier W. Stress fiber sarcomeres of fibroblasts are contractile. Cell. 1980 Nov;22(2 Pt 2):555–561. doi: 10.1016/0092-8674(80)90365-7. [DOI] [PubMed] [Google Scholar]
  28. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  29. Kuczmarski E. R., Rosenbaum J. L. Chick brain actin and myosin. Isolation and characterization. J Cell Biol. 1979 Feb;80(2):341–355. doi: 10.1083/jcb.80.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  32. Manasek F. J. Mitosis in developing cardiac muscle. J Cell Biol. 1968 Apr;37(1):191–196. doi: 10.1083/jcb.37.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Menko A. S., Croop J., Toyama Y., Holtzer H., Boettiger D. The response of chicken embryo dermal fibroblasts to cytochalasin B is altered by Rous sarcoma virus-induced cell transformation. Mol Cell Biol. 1982 Mar;2(3):320–330. doi: 10.1128/mcb.2.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nelson W. J., Lazarides E. Switching of subunit composition of muscle spectrin during myogenesis in vitro. 1983 Jul 28-Aug 3Nature. 304(5924):364–368. doi: 10.1038/304364a0. [DOI] [PubMed] [Google Scholar]
  35. Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
  36. Pardo J. V., Siliciano J. D., Craig S. W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983 Oct;97(4):1081–1088. doi: 10.1083/jcb.97.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
  38. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  40. Sanger J. W., Sanger J. M., Jockusch B. M. Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol. 1983 Apr;96(4):961–969. doi: 10.1083/jcb.96.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
  42. Small J. V., Rinnerthaler G., Hinssen H. Organization of actin meshworks in cultured cells: the leading edge. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):599–611. doi: 10.1101/sqb.1982.046.01.056. [DOI] [PubMed] [Google Scholar]
  43. Sweeney L. J., Clark W. A., Jr, Umeda P. K., Zak R., Manasek F. J. Immunofluorescence analysis of the primordial myosin detectable in embryonic striated muscle. Proc Natl Acad Sci U S A. 1984 Feb;81(3):797–800. doi: 10.1073/pnas.81.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  45. Tokuyasu K. T. Visualization of longitudinally-oriented intermediate filaments in frozen sections of chicken cardiac muscle by a new staining method. J Cell Biol. 1983 Aug;97(2):562–565. doi: 10.1083/jcb.97.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vale R. D., Shooter E. M. Alteration of binding properties and cytoskeletal attachment of nerve growth factor receptors in PC12 cells by wheat germ agglutinin. J Cell Biol. 1982 Sep;94(3):710–717. doi: 10.1083/jcb.94.3.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang E., Goldberg A. R. Changes in microfilament organization and surface topogrophy upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4065–4069. doi: 10.1073/pnas.73.11.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weatherbee J. A. Membranes and cell movement: interactions of membranes with the proteins of the cytoskeleton. Int Rev Cytol Suppl. 1981;12:113–176. doi: 10.1016/b978-0-12-364373-5.50014-7. [DOI] [PubMed] [Google Scholar]
  49. Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]
  50. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zigmond S. H., Otto J. J., Bryan J. Organization of myosin in a submembranous sheath in well-spread human fibroblasts. Exp Cell Res. 1979 Mar 15;119(2):205–219. doi: 10.1016/0014-4827(79)90349-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES