Abstract
Sea urchin spermatozoa demembranated with Triton X-100 in the presence of EGTA, termed potentially asymmetric, generate asymmetric bending waves in reactivation solutions containing EGTA. After they are converted to the potentially symmetric condition by extraction with Triton and millimolar Ca++, they generate symmetric bending waves in reactivation solutions containing EGTA. In the presence of EGTA, their asymmetry can be restored by addition of brain calmodulin or the concentrated supernatant obtained from extraction with Triton and millimolar Ca++. These extracts contain calmodulin, as assayed by gel electrophoresis, radioimmunoassay, activation of brain phosphodiesterase, and Ca++-dependent binding of asymmetry-restoring activity to a trifluorophenothiazine-affinity resin. Conversion to the potentially symmetric condition can also be achieved with trifluoperazine substituted for Triton during the exposure to millimolar Ca++, which suggests that the calmodulin-binding activity of Triton is important for this conversion. These observations suggest that the conversion to the potentially symmetric condition is the result of removal of some of the axonemal calmodulin and provide additional evidence for axonemal calmodulin as a mediator of the effect of Ca++ on the asymmetry of flagellar bending.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreasen T. J., Luetje C. W., Heideman W., Storm D. R. Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry. 1983 Sep 27;22(20):4615–4618. doi: 10.1021/bi00289a001. [DOI] [PubMed] [Google Scholar]
- Blum J. J., Hayes A., Jamieson G. A., Jr, Vanaman T. C. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J Cell Biol. 1980 Nov;87(2 Pt 1):386–397. doi: 10.1083/jcb.87.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Automated methods for estimation of sperm flagellar bending parameters. Cell Motil. 1984;4(6):417–430. doi: 10.1002/cm.970040603. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Benedict B. Mechanochemical coupling in flagella. 3. Effects of some uncoupling agents on properties of the flagellar ATPase. Arch Biochem Biophys. 1971 Jan;142(1):91–100. doi: 10.1016/0003-9861(71)90262-1. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol. 1979 Aug;82(2):401–411. doi: 10.1083/jcb.82.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility. Ann N Y Acad Sci. 1984;438:132–141. doi: 10.1111/j.1749-6632.1984.tb38282.x. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Josslin R., Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun. 1974 Jun 4;58(3):795–800. doi: 10.1016/s0006-291x(74)80487-0. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Simonick T. F. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. J Cell Biol. 1977 Dec;75(3):650–665. doi: 10.1083/jcb.75.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter S. G., Karl D. W. Inorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Methods. 1982 Dec;7(1):7–13. doi: 10.1016/0165-022x(82)90031-8. [DOI] [PubMed] [Google Scholar]
- Chafouleas J. G., Dedman J. R., Means A. R. Radioimmunoassay of calmodulin. Methods Enzymol. 1982;84:138–147. doi: 10.1016/0076-6879(82)84012-3. [DOI] [PubMed] [Google Scholar]
- Charbonneau H., Hice R., Hart R. C., Cormier M. J. Purification of calmodulin by Ca2+-dependent affinity chromatography. Methods Enzymol. 1983;102:17–39. doi: 10.1016/s0076-6879(83)02005-4. [DOI] [PubMed] [Google Scholar]
- Claybrook J. R., Nelson L. Flagellar adenosine triphosphatase from sea urchin sperm: properties and relation to motility. Science. 1968 Dec 6;162(3858):1134–1136. doi: 10.1126/science.162.3858.1134. [DOI] [PubMed] [Google Scholar]
- Garbers D. L., Hansbrough J. R., Radany E. W., Hyne R. V., Kopf G. S. Purification and characterization of calmodulin from sea urchin spermatozoa. J Reprod Fertil. 1980 Jul;59(2):377–381. doi: 10.1530/jrf.0.0590377. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Evans J. A., Gibbons B. H. Acetate anions stabilize the latency of dynein 1 ATPase and increase the velocity of tubule sliding in reactivated sperm flagella. Prog Clin Biol Res. 1982;80:181–184. doi: 10.1002/cm.970020734. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R., Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. doi: 10.1083/jcb.54.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitelman S. E., Witman G. B. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. doi: 10.1083/jcb.87.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Weber K. Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem. 1980 Nov 25;255(22):10551–10554. [PubMed] [Google Scholar]
- Greenlee D. V., Andreasen T. J., Storm D. R. Calcium-independent stimulation of Bordetella pertussis adenylate cyclase by calmodulin. Biochemistry. 1982 May 25;21(11):2759–2764. doi: 10.1021/bi00540a028. [DOI] [PubMed] [Google Scholar]
- Hisanaga S., Pratt M. M. Calmodulin interaction with cytoplasmic and flagellar dynein: calcium-dependent binding and stimulation of adenosinetriphosphatase activity. Biochemistry. 1984 Jun 19;23(13):3032–3037. doi: 10.1021/bi00308a029. [DOI] [PubMed] [Google Scholar]
- Hooper J. E., Kelly R. B. Calmodulin is tightly associated with synaptic vesicles independent of calcium. J Biol Chem. 1984 Jan 10;259(1):148–153. [PubMed] [Google Scholar]
- Ishiguro K., Murofushi H., Sakai H. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa. J Cell Biol. 1982 Mar;92(3):777–782. doi: 10.1083/jcb.92.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson G. A., Jr, Vanaman T. C., Blum J. J. Presence of calmodulin in Tetrahymena. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6471–6475. doi: 10.1073/pnas.76.12.6471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones H. P., Bradford M. M., McRorie R. A., Cormier M. J. High levels of a calcium-dependent modulator protein in spermatozoa and its similarity to brain modulator protein. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1264–1272. doi: 10.1016/0006-291x(78)90324-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Maihle N. J., Dedman J. R., Means A. R., Chafouleas J. G., Satir B. H. Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol. 1981 Jun;89(3):695–699. doi: 10.1083/jcb.89.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi K., Suzuki Y., Watanabe Y. Studies on calmodulin isolated from Tetrahymena cilia and its localization within the cilium. Exp Cell Res. 1982 Jan;137(1):217–227. doi: 10.1016/0014-4827(82)90022-2. [DOI] [PubMed] [Google Scholar]
- Ohnishi K., Watanabe Y. Purification and some properties of a new Ca2+-binding protein (TCBP-10) present in tetrahymena cilium. J Biol Chem. 1983 Nov 25;258(22):13978–13985. [PubMed] [Google Scholar]
- Otter T., Satir B. H., Satir P. Trifluoperazine-induced changes in swimming behavior of paramecium: evidence for two sites of drug action. Cell Motil. 1984;4(4):249–267. doi: 10.1002/cm.970040404. [DOI] [PubMed] [Google Scholar]
- Roufogalis B. D. Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem Biophys Res Commun. 1981 Feb 12;98(3):607–613. doi: 10.1016/0006-291x(81)91157-8. [DOI] [PubMed] [Google Scholar]
- Sharma R. K., Wang J. H. Inhibition of calmodulin-activated cyclic nucleotide phosphodiesterase by Triton X-100. Biochem Biophys Res Commun. 1981 May 29;100(2):710–715. doi: 10.1016/s0006-291x(81)80233-1. [DOI] [PubMed] [Google Scholar]
- Stommel E. W., Stephens R. E., Masure H. R., Head J. F. Specific localization of scallop gill epithelial calmodulin in cilia. J Cell Biol. 1982 Mar;92(3):622–628. doi: 10.1083/jcb.92.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod. 1983 Feb;28(1):75–104. doi: 10.1095/biolreprod28.1.75. [DOI] [PubMed] [Google Scholar]
- Van Eldik L. J., Piperno G., Watterson D. M. Similarities and dissimilarities between calmodulin and a Chlamydomonas flagellar protein. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4779–4783. doi: 10.1073/pnas.77.8.4779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verdugo P., Raess B. V., Villalon M. The role of calmodulin in the regulation of ciliary movement in mammalian epithelial cilia. J Submicrosc Cytol. 1983 Jan;15(1):95–96. [PubMed] [Google Scholar]
- Wallace R. W., Tallant E. A., Cheung W. Y. Assay of calmodulin by Ca2+-dependent phosphodiesterase. Methods Enzymol. 1983;102:39–47. doi: 10.1016/s0076-6879(83)02006-6. [DOI] [PubMed] [Google Scholar]
- Wang J. H., Sharma R. K., Huang C. Y., Chau V., Chock P. B. On the mechanism of activation of cyclic mucleotide phosphodiesterase by calmodulin. Ann N Y Acad Sci. 1980;356:190–204. doi: 10.1111/j.1749-6632.1980.tb29611.x. [DOI] [PubMed] [Google Scholar]
- Weiss B., Prozialeck W., Cimino M., Barnette M. S., Wallace T. L. Pharmacological regulation of calmodulin. Ann N Y Acad Sci. 1980;356:319–345. doi: 10.1111/j.1749-6632.1980.tb29621.x. [DOI] [PubMed] [Google Scholar]
- Welsh M. J., Aster J. C., Ireland M., Alcala J., Maisel H. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science. 1982 May 7;216(4546):642–644. doi: 10.1126/science.6280283. [DOI] [PubMed] [Google Scholar]
- Witman G. B., Minervini N. Role of calmodulin in the flagellar axoneme: effect of phenothiazines on reactivated axonemes of Chlamydomonas. Prog Clin Biol Res. 1982;80:199–204. doi: 10.1002/cm.970020738. [DOI] [PubMed] [Google Scholar]