Abstract
H36 is a species-specific, cell-surface antigen on differentiating newborn rat skeletal myoblasts and myogenic lines. This membrane antigen has been defined by a monoclonal antibody raised by the fusion of SP 2/0-Ag14 myeloma cells with spleen cells from mice immunized with myotubes derived from the myogenic E63 line. H36 antigen, isolated by immunoaffinity chromatography, is comprised of two polypeptides with apparent molecular weights of 98,000 and 117,000. Fluorescence photometry and radioimmunoassays have been used to follow quantitative and topographic changes in the H36 determinant during myogenesis. H36 is present at a basal level on replicating myoblasts; it increases on prefusion myoblasts and persists on myotubes. At or near the time of prefusion, it becomes concentrated between adjacent aligned myoblasts and localized on membrane "blebs". H36 is present on both skeletal and cardiac cells but absent from a variety of cells that include fibroblasts, neuronal cells, and smooth muscle. There are approximately 4 x 10(5) determinants per myoblast, and the Ka of the antibody is 3.8 x 10(8) liters/mol. The distributions of H36 on the top and attached surfaces of myoblasts and myotubes are distinct, which suggests localized specialization of these surfaces. H36 is an integral membrane component and upon cross-linking, it associates with the detergent- insoluble cytoskeletal framework. Inhibition of myogenesis by 5- bromodeoxyuridine or by calcium deprivation prevents the developmentally associated changes in the expression of H36. H36 is also absent or markedly reduced on the fu- and Ama102 developmentally defective mutant myoblast lines. We conclude that H36 is a muscle- specific, developmentally regulated cell-surface antigen that may have a role in myoblast differentiation and that can be used to determine the embryonic lineages of skeletal and cardiac muscle.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blau H. M., Webster C. Isolation and characterization of human muscle cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623–5627. doi: 10.1073/pnas.78.9.5623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullaro J. C., Brookman D. H. Comparison of skeletal muscle monolayer cultures initiated with cells dissociated by the vortex and trypsin methods. In Vitro. 1976 Aug;12(8):564–570. doi: 10.1007/BF02797440. [DOI] [PubMed] [Google Scholar]
- Chiquet M., Fambrough D. M. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J Cell Biol. 1984 Jun;98(6):1926–1936. doi: 10.1083/jcb.98.6.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiquet M., Fambrough D. M. Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J Cell Biol. 1984 Jun;98(6):1937–1946. doi: 10.1083/jcb.98.6.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman J. R., Coleman A. W., Hartline E. J. A clonal study of the reversible inhibition of muscle differentiation by the halogenated thymidine analog 5-bromodeoxyuridine. Dev Biol. 1969 Jun;19(6):527–548. doi: 10.1016/0012-1606(69)90036-0. [DOI] [PubMed] [Google Scholar]
- Crerar M. M., Andrews S. J., David E. S., Somers D. G., Mandel J. L., Pearson M. L. Amanitin binding to RNA polymerase II in alpha-amanitin-resistant rat myoblast mutants. J Mol Biol. 1977 May 15;112(2):317–329. doi: 10.1016/s0022-2836(77)80147-2. [DOI] [PubMed] [Google Scholar]
- Crerar M. M., Pearson M. L. RNA polymerase II regulation in alpha-amanitin-resistant rat myoblast mutants. Changes in wild-type and mutant enzyme levels during growth in alpha-amanitin. J Mol Biol. 1977 May 15;112(2):331–342. doi: 10.1016/s0022-2836(77)80148-4. [DOI] [PubMed] [Google Scholar]
- Fambrough D. M., Bayne E. K. Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem. 1983 Mar 25;258(6):3926–3935. [PubMed] [Google Scholar]
- Flanagan J., Koch G. L. Cross-linked surface Ig attaches to actin. Nature. 1978 May 25;273(5660):278–281. doi: 10.1038/273278a0. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner J. M., Fambrough D. M. Fibronectin expression during myogenesis. J Cell Biol. 1983 Feb;96(2):474–485. doi: 10.1083/jcb.96.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greve J. M., Gottlieb D. I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem. 1982;18(2):221–229. doi: 10.1002/jcb.1982.240180209. [DOI] [PubMed] [Google Scholar]
- Grove B. K., Schwartz G., Stockdale F. E. Quantitation of changes in cell surface determinants during skeletal muscle cell differentiation using monospecific antibody. J Supramol Struct Cell Biochem. 1981;17(2):147–152. doi: 10.1002/jsscb.380170205. [DOI] [PubMed] [Google Scholar]
- Hurko O., Walsh F. S. Human fetal muscle-specific antigen is restricted to regenerating myofibers in diseased adult muscle. Neurology. 1983 Jun;33(6):737–743. doi: 10.1212/wnl.33.6.737. [DOI] [PubMed] [Google Scholar]
- Jarvis M. R., Casperson G. F., Kranz D. M., Voss E. W., Jr Affinity maturation of NZB and BALB/cV mice anti-fluorescyl response. Mol Immunol. 1982 Apr;19(4):525–533. doi: 10.1016/0161-5890(82)90220-6. [DOI] [PubMed] [Google Scholar]
- Johnson G. D., Davidson R. S., McNamee K. C., Russell G., Goodwin D., Holborow E. J. Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J Immunol Methods. 1982 Dec 17;55(2):231–242. doi: 10.1016/0022-1759(82)90035-7. [DOI] [PubMed] [Google Scholar]
- Kaufman S. J., Parks C. M., Bohn J., Faiman L. E. Transformation is an alternative to normal skeletal muscle development. Exp Cell Res. 1980 Feb;125(2):333–349. doi: 10.1016/0014-4827(80)90128-7. [DOI] [PubMed] [Google Scholar]
- Kaufman S. J., Parks C. M. Loss of growth control and differentiation in the fu-1 variant of the L8 line of rat myoblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3888–3892. doi: 10.1073/pnas.74.9.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
- Koch G. L., Smith M. J. An association between actin and the major histocompatibility antigen H-2. Nature. 1978 May 25;273(5660):274–278. doi: 10.1038/273274a0. [DOI] [PubMed] [Google Scholar]
- Konieczny S. F., McKay J., Coleman J. R. Isolation and characterization of terminally differentiated chicken and rat skeletal muscle myoblasts. Dev Biol. 1982 May;91(1):11–26. doi: 10.1016/0012-1606(82)90003-3. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee H. U., Kaufman S. J. Use of monoclonal antibodies in the analysis of myoblast development. Dev Biol. 1981 Jan 15;81(1):81–95. doi: 10.1016/0012-1606(81)90350-x. [DOI] [PubMed] [Google Scholar]
- Lesley J. F., Lennon V. A. Transitory expression of Thy-1 antigen in skeletal muscle development. Nature. 1977 Jul 14;268(5616):163–165. doi: 10.1038/268163a0. [DOI] [PubMed] [Google Scholar]
- Marchalonis J. J., Cone R. E., Santer V. Enzymic iodination. A probe for accessible surface proteins of normal and neoplastic lymphocytes. Biochem J. 1971 Oct;124(5):921–927. doi: 10.1042/bj1240921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neff N. T., Lowrey C., Decker C., Tovar A., Damsky C., Buck C., Horwitz A. F. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J Cell Biol. 1982 Nov;95(2 Pt 1):654–666. doi: 10.1083/jcb.95.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOCKDALE F., OKAZAKI K., NAMEROFF M., HOLTZER H. 5-BROMODEOXYURIDINE: EFFECT ON MYOGENESIS IN VITRO. Science. 1964 Oct 23;146(3643):533–535. doi: 10.1126/science.146.3643.533. [DOI] [PubMed] [Google Scholar]
- Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
- Scott R. E., Dousa T. P. Differences in the cyclic AMP-dependent phosphorylation of plasma membrane proteins of differentiated and undifferentiated L6 myogenic cells. Differentiation. 1980 Apr;16(2):135–140. doi: 10.1111/j.1432-0436.1980.tb01069.x. [DOI] [PubMed] [Google Scholar]
- Shainberg A., Brik H. The appearance of acetylcholine receptors triggered by fusion of myoblasts in vitro. FEBS Lett. 1978 Apr 15;88(2):327–331. doi: 10.1016/0014-5793(78)80204-x. [DOI] [PubMed] [Google Scholar]
- Shainberg A., Yagil G., Yaffe D. Control of myogenesis in vitro by Ca 2 + concentration in nutritional medium. Exp Cell Res. 1969 Nov;58(1):163–167. doi: 10.1016/0014-4827(69)90127-x. [DOI] [PubMed] [Google Scholar]
- Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
- Simonds W. F., Koski G., Streaty R. A., Hjelmeland L. M., Klee W. A. Solubilization of active opiate receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4623–4627. doi: 10.1073/pnas.77.8.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somers D. G., Pearson M. L., Ingles C. J. Regulation of RNA polymerase II activity in a mutant rat myoblast cell line resistant to alpha-amanitin. Nature. 1975 Jan 31;253(5490):372–374. doi: 10.1038/253372a0. [DOI] [PubMed] [Google Scholar]
- Sénéchal H., Pichard A. L., Delain D., Schapira G., Wahrmann J. P. Changes in plasma membrane phosphoproteins during differentiation of an established myogenic cell line and a non-fusing alpha-amanitin resistant mutant. FEBS Lett. 1982 Mar 22;139(2):209–213. doi: 10.1016/0014-5793(82)80853-3. [DOI] [PubMed] [Google Scholar]
- Wahrmann J. P., Drugeon G., Delain E., Delain D. Gene expression during the differentiation of myogenic cells of the L6 line. Biochimie. 1976;58(5):551–562. doi: 10.1016/s0300-9084(76)80225-8. [DOI] [PubMed] [Google Scholar]
- Wakshull E., Bayne E. K., Chiquet M., Fambrough D. M. Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia. Dev Biol. 1983 Dec;100(2):464–477. doi: 10.1016/0012-1606(83)90239-7. [DOI] [PubMed] [Google Scholar]
- Weyhenmeyer J. A., Fellows R. E. Presence of immunoreactive insulin in neurons cultured from fetal rat brain. Cell Mol Neurobiol. 1983 Mar;3(1):81–86. doi: 10.1007/BF00735000. [DOI] [PMC free article] [PubMed] [Google Scholar]
