Abstract
Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two- spored asci at the restrictive temperature. Temperature-sensitive period for production of two-spored asci was approximately 12 h after the transfer of cells to the sporulation medium. The levels of cAMP increased during this period in the wild type and cyr1-2/cyr1-2 diploid cells incubated at the permissive temperature, but remained at an extremely low level in the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature. Dyad analysis of the cyr1-2 strain indicated that meiotic products were randomly included into ascospores. Fluorescent microscopy of the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature revealed that individual haploid nuclei were enclosed in each of the two spores after meiosis. About half of the cyr1-2/cyr1-2 diploid cells entered normal meiosis 1 producing two normal spindle pole bodies with inner and outer plaques, and the other half entered abnormal meiosis 1 producing one normal spindle pole body and one defective spindle pole body without out plaque. At meiosis II, some cells contained a pair of normal spindle pole bodies and other cells contained pairs of normal and abnormal spindle pole bodies.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown B. L., Ekins R. P., Albano J. D. Saturation assay for cyclic AMP using endogenous binding protein. Adv Cyclic Nucleotide Res. 1972;2:25–40. [PubMed] [Google Scholar]
- Byers B., Goetsch L. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5056–5060. doi: 10.1073/pnas.72.12.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidow L. S., Goetsch L., Byers B. Preferential Occurrence of Nonsister Spores in Two-Spored Asci of SACCHAROMYCES CEREVISIAE: Evidence for Regulation of Spore-Wall Formation by the Spindle Pole Body. Genetics. 1980 Mar;94(3):581–595. doi: 10.1093/genetics/94.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito M. S., Esposoto R. E., Moens P. B. Genetic analysis of two spored asci produced by the spo 3 mutant of Saccharomyces. Mol Gen Genet. 1974;135(2):91–95. doi: 10.1007/BF00264777. [DOI] [PubMed] [Google Scholar]
- Grewal N. S., Miller J. J. Formation of asci with two diploid spores by diploid cells of Saccharomyces. Can J Microbiol. 1972 Dec;18(12):1897–1905. doi: 10.1139/m72-295. [DOI] [PubMed] [Google Scholar]
- Kuroiwa T., Nishibayashi S., Kawano S., Suzuki T. Visualization of DNA in various phages (T4, chi, T7, phi 29) by ethidium bromide epi-fluorescent microscopy. Experientia. 1981;37(9):969–971. doi: 10.1007/BF01971784. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matsumoto K., Uno I., Ishikawa T. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp Cell Res. 1983 Jun;146(1):151–161. doi: 10.1016/0014-4827(83)90333-6. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Uno I., Ishikawa T. Identification of the structural gene and nonsense alleles for adenylate cyclase in Saccharomyces cerevisiae. J Bacteriol. 1984 Jan;157(1):277–282. doi: 10.1128/jb.157.1.277-282.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto K., Uno I., Ishikawa T. Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell. 1983 Feb;32(2):417–423. doi: 10.1016/0092-8674(83)90461-0. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Uno I., Oshima Y., Ishikawa T. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2355–2359. doi: 10.1073/pnas.79.7.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moens P. B., Esposito R. E., Esposito M. S. Aberrant nuclear behavior at meiosis and anucleate spore formation by sporulation-deficient (SPO) mutants of Saccharomyces cerevisiae. Exp Cell Res. 1974 Jan;83(1):166–174. doi: 10.1016/0014-4827(74)90700-9. [DOI] [PubMed] [Google Scholar]
- Moens P. B., Rapport E. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 1971 Aug;50(2):344–361. doi: 10.1083/jcb.50.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. doi: 10.1128/mr.44.4.519-571.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto S., Iino T. Genetic block of outer plaque morphogenesis at the second meiotic division in an hfd1-1 mutant of Saccharomyces cerevisiae. J Gen Microbiol. 1982 Jun;128(6):1309–1317. doi: 10.1099/00221287-128-6-1309. [DOI] [PubMed] [Google Scholar]
- Okamoto S., Iino T. Selective abortion of two nonsister nuclei in a developing ascus of the hfd-1 mutant in Saccharomyces cerevisiae. Genetics. 1981 Oct;99(2):197–209. doi: 10.1093/genetics/99.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schild D., Byers B. Diploid spore formation and other meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae. Genetics. 1980 Dec;96(4):859–876. doi: 10.1093/genetics/96.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]