Abstract
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.
Full Text
The Full Text of this article is available as a PDF (3.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. C., King S. C., Parsons S. M. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Mol Pharmacol. 1983 Jul;24(1):48–54. [PubMed] [Google Scholar]
- Axelrod J. Noradrenaline: fate and control of its biosynthesis. Science. 1971 Aug 13;173(3997):598–606. doi: 10.1126/science.173.3997.598. [DOI] [PubMed] [Google Scholar]
- Basbaum C. B., Heuser J. E. Morphological studies of stimulated adrenergic axon varicosities in the mouse vas deferens. J Cell Biol. 1979 Feb;80(2):310–325. doi: 10.1083/jcb.80.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisby M. A., Fillenz M. The storage of endogenous noradrenaline in sympathetic nerve terminals. J Physiol. 1971 May;215(1):163–179. doi: 10.1113/jphysiol.1971.sp009463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom S. R., Edwards A. V. Vasoactive intestinal peptide in relation to atropine resistant vasodilatation in the submaxillary gland of the cat. J Physiol. 1980 Mar;300:41–53. doi: 10.1113/jphysiol.1980.sp013150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohan T. P., Boyne A. F., Guth P. S., Narayanan Y., Williams T. H. Letter: Electron-dense particle in cholinergic synaptic vesicles. Nature. 1973 Jul 6;244(5410):32–34. doi: 10.1038/244032a0. [DOI] [PubMed] [Google Scholar]
- Boyne A. F., Bohan T. P., Williams T. H. Effects of calcium-containing fixation solutions on cholinergic synaptic vesicles. J Cell Biol. 1974 Dec;63(3):780–795. doi: 10.1083/jcb.63.3.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley K. M., Landis S. C. Morphological studies of neurotransmitter release and membrane recycling in sympathetic nerve terminals in culture. J Neurocytol. 1983 Feb;12(1):93–116. doi: 10.1007/BF01148089. [DOI] [PubMed] [Google Scholar]
- Burton H., Bunge R. P. A comparison of the uptake and release of [3H]norepinephrine in rat autonomic and sensory ganglia in tissue culture. Brain Res. 1975 Oct 24;97(1):157–162. doi: 10.1016/0006-8993(75)90924-5. [DOI] [PubMed] [Google Scholar]
- DAHLSTROEM A., FUXE K., HILLARP N. A. SITE OF ACTION OF RESERPINE. Acta Pharmacol Toxicol (Copenh) 1965;22:277–292. doi: 10.1111/j.1600-0773.1965.tb01823.x. [DOI] [PubMed] [Google Scholar]
- Fried G., Thureson-Klein A., Lagercrantz H. Noradrenaline content correlated to matrix density in small noradrenergic vesicles from rat seminal ducts. Neuroscience. 1981;6(4):787–800. doi: 10.1016/0306-4522(81)90162-7. [DOI] [PubMed] [Google Scholar]
- Furshpan E. J., MacLeish P. R., O'Lague P. H., Potter D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4225–4229. doi: 10.1073/pnas.73.11.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furshpan E. J., Potter D. D., Landis S. C. On the transmitter repertoire of sympathetic neurons in culture. Harvey Lect. 1980;76:149–191. [PubMed] [Google Scholar]
- Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D., Iacovitti L., Joh T. H., Burton H. The immunocytochemical localization of tyrosine hydroxylase within rat sympathetic neurons that release acetylcholine in culture. J Neurosci. 1981 Feb;1(2):126–131. doi: 10.1523/JNEUROSCI.01-02-00126.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hökfelt T., Lundberg J. M., Schultzberg M., Johansson O., Ljungdahl A., Rehfeld J. Coexistence of peptides and putative transmitters in neurons. Adv Biochem Psychopharmacol. 1980;22:1–23. [PubMed] [Google Scholar]
- Hökfelt T. Ultrastructural studies on adrenergic nerve terminals in the albino rat iris after pharmacological and experimental treatment. Acta Physiol Scand. 1967 Jan-Feb;69(1):125–126. doi: 10.1111/j.1748-1716.1967.tb03500.x. [DOI] [PubMed] [Google Scholar]
- Iacovitti L., Joh T. H., Park D. H., Bunge R. P. Dual expression of neurotransmitter synthesis in cultured autonomic neurons. J Neurosci. 1981 Jul;1(7):685–690. doi: 10.1523/JNEUROSCI.01-07-00685.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iacovitti L., Johnson M. I., Joh T. H., Bunge R. P. Biochemical and morphological characterization of sympathetic neurons grown in a chemically-defined medium. Neuroscience. 1982;7(9):2225–2239. doi: 10.1016/0306-4522(82)90133-6. [DOI] [PubMed] [Google Scholar]
- Jan Y. N., Jan L. Y. Coexistence and corelease of cholinergic and peptidergic transmitters in frog sympathetic ganglia. Fed Proc. 1983 Sep;42(12):2929–2933. [PubMed] [Google Scholar]
- Johnson M. I., Argiro V. Techniques in the tissue culture of rat sympathetic neurons. Methods Enzymol. 1983;103:334–347. doi: 10.1016/s0076-6879(83)03022-0. [DOI] [PubMed] [Google Scholar]
- Johnson M. I., Iacovitti L., Higgins D., Bunge R. P., Burton H. Growth and development of sympathetic neurons in tissue culture. Ciba Found Symp. 1981;83:108–122. doi: 10.1002/9780470720653.ch6. [DOI] [PubMed] [Google Scholar]
- Johnson M. I., Ross C. D., Meyers M., Spitznagel E. L., Bunge R. P. Morphological and biochemical studies on the development of cholinergic properties in cultured sympathetic neurons. I. Correlative changes in choline acetyltransferase and synaptic vesicle cytochemistry. J Cell Biol. 1980 Mar;84(3):680–691. doi: 10.1083/jcb.84.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M., Ross D., Meyers M., Rees R., Bunge R., Wakshull E., Burton H. Synaptic vesicle cytochemistry changes when cultured sympathetic neurones develop cholinergic interactions. Nature. 1976 Jul 22;262(5566):308–310. doi: 10.1038/262308a0. [DOI] [PubMed] [Google Scholar]
- Ko C. P., Burton H., Bunge R. P. Synaptic transmission between rat spinal cord explants and dissociated superior cervical ganglion neurons in tissue culture. Brain Res. 1976 Dec 3;117(3):437–460. doi: 10.1016/0006-8993(76)90752-6. [DOI] [PubMed] [Google Scholar]
- Ko C. P., Burton H., Johnson M. I., Bunge R. P. Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures. Brain Res. 1976 Dec 3;117(3):461–485. doi: 10.1016/0006-8993(76)90753-8. [DOI] [PubMed] [Google Scholar]
- Landis S. C. Development of cholinergic sympathetic neurons: evidence for transmitter plasticity in vivo. Fed Proc. 1983 Apr;42(6):1633–1638. [PubMed] [Google Scholar]
- Landis S. C. Developmental changes in the neurotransmitter properties of dissociated sympathetic neurons: a cytochemical study of the effects of medium. Dev Biol. 1980 Jun 15;77(2):349–361. doi: 10.1016/0012-1606(80)90480-7. [DOI] [PubMed] [Google Scholar]
- Landis S. C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4220–4224. doi: 10.1073/pnas.73.11.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundberg J. M., Fried G., Fahrenkrug J., Holmstedt B., Hökfelt T., Lagercrantz H., Lundgren G., Anggård A. Subcellular fractionation of cat submandibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP). Neuroscience. 1981;6(6):1001–1010. doi: 10.1016/0306-4522(81)90066-x. [DOI] [PubMed] [Google Scholar]
- Luqmani Y. A., Giompres P. On the specificity of uptake by isolated Torpedo synaptic vesicles. Neurosci Lett. 1981 Apr 9;23(1):81–85. doi: 10.1016/0304-3940(81)90191-9. [DOI] [PubMed] [Google Scholar]
- O'Lague P. H., Obata K., Claude P., Furshpan E. J., Potter D. D. Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3602–3606. doi: 10.1073/pnas.71.9.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson M. I., Bunge R. P. Anatomical observations on the specificity of synapse formation in tissue culture. Brain Res. 1973 Sep 14;59:19–33. doi: 10.1016/0006-8993(73)90251-5. [DOI] [PubMed] [Google Scholar]
- Pappas G. D., Rose S. Localization of calcium deposits in the frog neuromuscular junction at rest and following stimulation. Brain Res. 1976 Feb 20;103(2):362–365. doi: 10.1016/0006-8993(76)90806-4. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
- Pelletier G., Steinbusch H. W., Verhofstad A. A. Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature. 1981 Sep 3;293(5827):71–72. doi: 10.1038/293071a0. [DOI] [PubMed] [Google Scholar]
- Politoff A. L., Rose S., Pappas G. D. The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J Cell Biol. 1974 Jun;61(3):818–823. doi: 10.1083/jcb.61.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard R. M., Fillenz M., Kelly P. Parallel changes in ultrastructure and noradrenaline content of nerve terminals in rat vas deferens following transmitter release. Neuroscience. 1982 Jul;7(7):1623–1629. doi: 10.1016/0306-4522(82)90020-3. [DOI] [PubMed] [Google Scholar]
- Potter D. D., Landis S. C., Furshpan E. J. Dual function during development of rat sympathetic neurones in culture. J Exp Biol. 1980 Dec;89:57–71. doi: 10.1242/jeb.89.1.57. [DOI] [PubMed] [Google Scholar]
- Reichardt L. F., Patterson P. H. Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures. Nature. 1977 Nov 10;270(5633):147–151. doi: 10.1038/270147a0. [DOI] [PubMed] [Google Scholar]
- Richardson K. C. Electron microscopic identification of autonomic nerve endings. Nature. 1966 May 14;210(5037):756–756. doi: 10.1038/210756a0. [DOI] [PubMed] [Google Scholar]
- Viveros O. H., Diliberto E. J., Jr, Daniels A. J. Biochemical and functional evidence for the cosecretion of multiple messengers from single and multiple compartments. Fed Proc. 1983 Sep;42(12):2923–2928. [PubMed] [Google Scholar]
- Wakshull E., Johnson M. I., Burton H. Persistence of an amine uptake system in cultured rat sympathetic neurons which use acetylcholine as their transmitter. J Cell Biol. 1978 Oct;79(1):121–131. doi: 10.1083/jcb.79.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walicke P. A., Campenot R. B., Patterson P. H. Determination of transmitter function by neuronal activity. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5767–5771. doi: 10.1073/pnas.74.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky E., Patterson P. H. Tyrosine hydroxylase activity decreases with induction of cholinergic properties in cultured sympathetic neurons. J Neurosci. 1983 Jul;3(7):1495–1500. doi: 10.1523/JNEUROSCI.03-07-01495.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]