Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Jul 1;101(1):28–35. doi: 10.1083/jcb.101.1.28

Identification of a 70,000-D protein in lens membrane junctional domains

PMCID: PMC2113615  PMID: 3891760

Abstract

A 70,000-D membrane protein (MP70), which is restricted to the eye lens fibers and is present in immunologically homologous form in many vertebrate species, has been identified. By use of anti-MP70 monoclonal antibodies for immunofluorescence microscopy and electron microscopy, this polypeptide was localized in lens membrane junctional domains. Both immunofluorescence microscopy and SDS PAGE reveal an abundance of MP70 in the lens outer cortex that coincides with a high frequency of fiber gap junctions in the same region.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcalá J., Lieska N., Maisel H. Protein composition of bovine lens cortical fiber cell membranes. Exp Eye Res. 1975 Dec;21(6):581–595. doi: 10.1016/0014-4835(75)90040-8. [DOI] [PubMed] [Google Scholar]
  2. Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
  3. Benedetti E. L., Dunia I., Bloemendal H. Development of junctions during differentiation of lens fibers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5073–5077. doi: 10.1073/pnas.71.12.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernardini G., Peracchia C., Venosa R. A. Healing-over in rat crystalline lens. J Physiol. 1981 Nov;320:187–192. doi: 10.1113/jphysiol.1981.sp013943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloemendal H. Lens proteins. CRC Crit Rev Biochem. 1982;12(1):1–38. doi: 10.3109/10409238209105849. [DOI] [PubMed] [Google Scholar]
  6. Bloemendal H., Zweers A., Vermorken F., Dunia I., Benedetti E. L. The plasma membranes of eye lens fibres. Biochemical and structural characterization. Cell Differ. 1972 Jun;1(2):91–106. doi: 10.1016/0045-6039(72)90032-2. [DOI] [PubMed] [Google Scholar]
  7. Bok D., Dockstader J., Horwitz J. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J Cell Biol. 1982 Jan;92(1):213–220. doi: 10.1083/jcb.92.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Broekhuyse R. M., Kuhlmann E. D. Lens membranes. IV. Preparative isolation and characterization of membranes and various membrane proteins from calf lens. Exp Eye Res. 1978 Mar;26(3):305–320. doi: 10.1016/0014-4835(78)90077-5. [DOI] [PubMed] [Google Scholar]
  10. Broekhuyse R. M., Kuhlmann E. D., Winkens H. J. Lens membranes VII. MIP is an immunologically specific component of lens fiber membranes and is identical with 26K band protein. Exp Eye Res. 1979 Sep;29(3):303–313. doi: 10.1016/0014-4835(79)90009-5. [DOI] [PubMed] [Google Scholar]
  11. Brooks H. V., Jolly R. D., Paterson C. A. The pathology of an inherited cataract of sheep. Curr Eye Res. 1982;2(9):625–632. doi: 10.3109/02713688208996364. [DOI] [PubMed] [Google Scholar]
  12. Dermietzel R., Leibstein A., Frixen U., Janssen-Timmen U., Traub O., Willecke K. Gap junctions in several tissues share antigenic determinants with liver gap junctions. EMBO J. 1984 Oct;3(10):2261–2270. doi: 10.1002/j.1460-2075.1984.tb02124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dunia I., Sen Ghosh C., Benedetti E. L., Zweers A., Bloemendal H. Isolation and protein pattern of eye lens fiber junctions. FEBS Lett. 1974 Sep 1;45(1):139–144. doi: 10.1016/0014-5793(74)80831-8. [DOI] [PubMed] [Google Scholar]
  14. Fitzgerald P. G., Bok D., Horwitz J. Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens. J Cell Biol. 1983 Nov;97(5 Pt 1):1491–1499. doi: 10.1083/jcb.97.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garadi R., Reddy V. N., Kador P. F., Kinoshita J. H. Membrane glycoproteins of Philly mouse lens. Invest Ophthalmol Vis Sci. 1983 Sep;24(9):1321–1324. [PubMed] [Google Scholar]
  16. Goodenough D. A., Dick J. S., 2nd, Lyons J. E. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980 Aug;86(2):576–589. doi: 10.1083/jcb.86.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodenough D. A. Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci. 1979 Nov;18(11):1104–1122. [PubMed] [Google Scholar]
  18. Gulik-Krzywicki T., Tardieu A., Delaye M. Spatial reorganization of low-molecular-weight proteins during cold cataract opacification. Biochim Biophys Acta. 1984 Jul 16;800(1):28–32. doi: 10.1016/0304-4165(84)90090-4. [DOI] [PubMed] [Google Scholar]
  19. Hertzberg E. L. A detergent-independent procedure for the isolation of gap junctions from rat liver. J Biol Chem. 1984 Aug 10;259(15):9936–9943. [PubMed] [Google Scholar]
  20. Hertzberg E. L., Anderson D. J., Friedlander M., Gilula N. B. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions. J Cell Biol. 1982 Jan;92(1):53–59. doi: 10.1083/jcb.92.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hertzberg E. L., Skibbens R. V. A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues. Cell. 1984 Nov;39(1):61–69. doi: 10.1016/0092-8674(84)90191-0. [DOI] [PubMed] [Google Scholar]
  22. Janssen-Timmen U., Dermietzel R., Frixen U., Leibstein A., Traub O., Willecke K. Immunocytochemical localization of the gap junction 26 K protein in mouse liver plasma membranes. EMBO J. 1983;2(3):295–302. doi: 10.1002/j.1460-2075.1983.tb01422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  24. Keeling P., Johnson K., Sas D., Klukas K., Donahue P., Johnson R. Arrangement of MP26 in lens junctional membranes: analysis with proteases and antibodies. J Membr Biol. 1983;74(3):217–228. doi: 10.1007/BF02332125. [DOI] [PubMed] [Google Scholar]
  25. Kistler J., Bullivant S. Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett. 1980 Feb 25;111(1):73–78. doi: 10.1016/0014-5793(80)80764-2. [DOI] [PubMed] [Google Scholar]
  26. Kistler J., Bullivant S. The connexon order in isolated lens gap junctions. J Ultrastruct Res. 1980 Jul;72(1):27–38. doi: 10.1016/s0022-5320(80)90132-x. [DOI] [PubMed] [Google Scholar]
  27. Kistler J., Duncombe Y., Laemmli U. K. Mapping nucleolar proteins with monoclonal antibodies. J Cell Biol. 1984 Dec;99(6):1981–1988. doi: 10.1083/jcb.99.6.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kuszak J. R., Alcalá J., Maisel H. Biochemical and structural features of chick lens gap junctions. Exp Eye Res. 1981 Aug;33(2):157–166. doi: 10.1016/s0014-4835(81)80064-4. [DOI] [PubMed] [Google Scholar]
  29. Kuszak J. R., Macsai M. S., Rae J. L. Stereo scanning electron microscopy of the crystalline lens. Scan Electron Microsc. 1983;(Pt 3):1415–1426. [PubMed] [Google Scholar]
  30. Kuszak J., Alcala J., Maisel H. The surface morphology of embryonic and adult chick lens-fiber cells. Am J Anat. 1980 Dec;159(4):395–410. doi: 10.1002/aja.1001590406. [DOI] [PubMed] [Google Scholar]
  31. Kuwabara T. The maturation of the lens cell: a morphologic study. Exp Eye Res. 1975 May;20(5):427–443. doi: 10.1016/0014-4835(75)90085-8. [DOI] [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Laskey R. A., Mills A. D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 1977 Oct 15;82(2):314–316. doi: 10.1016/0014-5793(77)80609-1. [DOI] [PubMed] [Google Scholar]
  35. Lo W. K., Harding C. V. Square arrays and their role in ridge formation in human lens fibers. J Ultrastruct Res. 1984 Mar;86(3):228–245. doi: 10.1016/s0022-5320(84)90103-5. [DOI] [PubMed] [Google Scholar]
  36. Nicholson B. J., Takemoto L. J., Hunkapiller M. W., Hood L. E., Revel J. P. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions. Cell. 1983 Mar;32(3):967–978. doi: 10.1016/0092-8674(83)90081-8. [DOI] [PubMed] [Google Scholar]
  37. Paul D. L., Goodenough D. A. Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol. 1983 Mar;96(3):625–632. doi: 10.1083/jcb.96.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peracchia C. Calcium effects on gap junction structure and cell coupling. Nature. 1978 Feb 16;271(5646):669–671. doi: 10.1038/271669a0. [DOI] [PubMed] [Google Scholar]
  39. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Philipson B. T., Hanninen L., Balazs E. A. Cell contacts in human and bovine lenses. Exp Eye Res. 1975 Sep;21(3):205–219. doi: 10.1016/0014-4835(75)90091-3. [DOI] [PubMed] [Google Scholar]
  41. Rae J. L. The electrophysiology of the crystalline lens. Curr Top Eye Res. 1979;1:37–90. [PubMed] [Google Scholar]
  42. Renart J., Reiser J., Stark G. R. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3116–3120. doi: 10.1073/pnas.76.7.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Spector A., Garner M. H., Garner W. H., Roy D., Farnsworth P., Shyne S. An extrinsic membrane polypeptide associated with high-molecular-weight protein aggregates in human cataract. Science. 1979 Jun 22;204(4399):1323–1326. doi: 10.1126/science.377484. [DOI] [PubMed] [Google Scholar]
  44. Spector A. The search for a solution to senile cataracts. Proctor lecture. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):130–146. [PubMed] [Google Scholar]
  45. Stähli C., Staehelin T., Miggiano V., Schmidt J., Häring P. High frequencies of antigen-specific hybridomas: dependence on immunization parameters and prediction by spleen cell analysis. J Immunol Methods. 1980;32(3):297–304. doi: 10.1016/0022-1759(80)90194-5. [DOI] [PubMed] [Google Scholar]
  46. Stähli C., Staehelin T., Miggiano V. Spleen cell analysis and optimal immunization for high-frequency production of specific hybridomas. Methods Enzymol. 1983;92:26–36. doi: 10.1016/0076-6879(83)92006-2. [DOI] [PubMed] [Google Scholar]
  47. Takemoto L. J., Hansen J. S. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis. Invest Ophthalmol Vis Sci. 1982 Mar;22(3):336–342. [PubMed] [Google Scholar]
  48. Tanaka M., Russell P., Smith S., Uga S., Kuwabara T., Kinoshita J. H. Membrane alterations during cataract development in the Nakano mouse lens. Invest Ophthalmol Vis Sci. 1980 Jun;19(6):619–629. [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wannemacher C. F., Spector A. Protein synthesis in the core of calf lens. Exp Eye Res. 1968 Oct;7(4):623–625. doi: 10.1016/s0014-4835(68)80018-1. [DOI] [PubMed] [Google Scholar]
  51. Warner A. E., Guthrie S. C., Gilula N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):127–131. doi: 10.1038/311127a0. [DOI] [PubMed] [Google Scholar]
  52. Wong M. M., Robertson N. P., Horwitz J. Heat induced aggregation of the sodium dodecyl sulfate-solubilized main intrinsic polypeptide isolated from bovine lens plasma membrane. Biochem Biophys Res Commun. 1978 Sep 14;84(1):158–165. doi: 10.1016/0006-291x(78)90277-2. [DOI] [PubMed] [Google Scholar]
  53. Zampighi G., Simon S. A., Robertson J. D., McIntosh T. J., Costello M. J. On the structural organization of isolated bovine lens fiber junctions. J Cell Biol. 1982 Apr;93(1):175–189. doi: 10.1083/jcb.93.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES