Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Jul 1;101(1):240–256. doi: 10.1083/jcb.101.1.240

Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures

PMCID: PMC2113626  PMID: 3924918

Abstract

Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.

Full Text

The Full Text of this article is available as a PDF (11.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Fambrough D. M. Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol. 1983 Nov;97(5 Pt 1):1396–1411. doi: 10.1083/jcb.97.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bendayan M., Roth J., Perrelet A., Orci L. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem. 1980 Feb;28(2):149–160. doi: 10.1177/28.2.7354212. [DOI] [PubMed] [Google Scholar]
  3. Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem. 1983 Jan;31(1):101–109. doi: 10.1177/31.1.6187796. [DOI] [PubMed] [Google Scholar]
  4. Bennett P. Myofibrillar connection. Nature. 1979 Apr 12;278(5705):602–603. doi: 10.1038/278602a0. [DOI] [PubMed] [Google Scholar]
  5. Bloch R. J., Geiger B. The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell. 1980 Aug;21(1):25–35. doi: 10.1016/0092-8674(80)90111-7. [DOI] [PubMed] [Google Scholar]
  6. Bloch R. J., Hall Z. W. Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol. 1983 Jul;97(1):217–223. doi: 10.1083/jcb.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonilla E. Ultrastructural study of the muscle cell surface. J Ultrastruct Res. 1983 Mar;82(3):341–345. doi: 10.1016/s0022-5320(83)80022-7. [DOI] [PubMed] [Google Scholar]
  8. Burden S. J., Sargent P. B., McMahan U. J. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979 Aug;82(2):412–425. doi: 10.1083/jcb.82.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  10. Faulkner J. A., Claflin D. R., McCully K. K., Jones D. A. Contractile properties of bundles of fiber segments from skeletal muscles. Am J Physiol. 1982 Jul;243(1):C66–C73. doi: 10.1152/ajpcell.1982.243.1.C66. [DOI] [PubMed] [Google Scholar]
  11. Fedde M. R. Electrical properties and acetylcholine sensitivity of singly and multiply innervated avian muscle fibers. J Gen Physiol. 1969 May;53(5):624–637. doi: 10.1085/jgp.53.5.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feramisco J. R., Smart J. E., Burridge K., Helfman D. M., Thomas G. P. Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J Biol Chem. 1982 Sep 25;257(18):11024–11031. [PubMed] [Google Scholar]
  13. GINSBORG B. L. Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J Physiol. 1960 Dec;154:581–598. doi: 10.1113/jphysiol.1960.sp006597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  15. Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gutmann E., Hanzlíková V., Holecková E. Development of fast and slow muscles of the chicken in vivo and their latent period in tissue culture. Exp Cell Res. 1969 Jul;56(1):33–38. doi: 10.1016/0014-4827(69)90389-9. [DOI] [PubMed] [Google Scholar]
  17. Hess A. Vertebrate slow muscle fibers. Physiol Rev. 1970 Jan;50(1):40–62. doi: 10.1152/physrev.1970.50.1.40. [DOI] [PubMed] [Google Scholar]
  18. Hirokawa N., Heuser J. E. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J Neurocytol. 1982 Jun;11(3):487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
  19. Hník P., Jirmanová I., Vyklický L., Zelená J. Fast and slow muscles of the chick after nerve cross-union. J Physiol. 1967 Nov;193(2):309–325. doi: 10.1113/jphysiol.1967.sp008359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jirmanová I., Zelená J. Effect of denervation and tenotomy on slow and fast muscles of the chicken. Z Zellforsch Mikrosk Anat. 1970;106(3):333–347. doi: 10.1007/BF00335777. [DOI] [PubMed] [Google Scholar]
  21. Koenig J., Fardeau M. Etude histochimique des muscles grands dorsaux antérieur et postérieur du poulet et des modifications observées après dénervation et réinnervation homologue ou croisée. Arch Anat Microsc Morphol Exp. 1973 Jul-Sep;62(3):249–267. [PubMed] [Google Scholar]
  22. Korneliussen H. Ultrastructure of myotendinous junctions in Myxine and rat. Specializations between the plasma membrane and the lamina densa. Z Anat Entwicklungsgesch. 1973;142(1):91–101. doi: 10.1007/BF00519878. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McMahan U. J., Slater C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol. 1984 Apr;98(4):1453–1473. doi: 10.1083/jcb.98.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakao T. Fine structure of the myotendinous junction and "terminal coupling" in the skeletal muscle of the lamprey, Lampetra japonica. Anat Rec. 1975 Jul;182(3):321–337. doi: 10.1002/ar.1091820306. [DOI] [PubMed] [Google Scholar]
  27. Nakao T. Some observations on the fine structure of the myotendinous junction in myotomal muscle of the tadpole tail. Cell Tissue Res. 1976 Feb 12;166(2):241–254. doi: 10.1007/BF00227045. [DOI] [PubMed] [Google Scholar]
  28. Nelson W. J., Lazarides E. Expression of the beta subunit of spectrin in nonerythroid cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):363–367. doi: 10.1073/pnas.80.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nelson W. J., Lazarides E. Switching of subunit composition of muscle spectrin during myogenesis in vitro. 1983 Jul 28-Aug 3Nature. 304(5924):364–368. doi: 10.1038/304364a0. [DOI] [PubMed] [Google Scholar]
  30. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  31. Pardo J. V., Siliciano J. D., Craig S. W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements ("costameres") mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1008–1012. doi: 10.1073/pnas.80.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pardo J. V., Siliciano J. D., Craig S. W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983 Oct;97(4):1081–1088. doi: 10.1083/jcb.97.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ravdin P., Axelrod D. Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem. 1977 Jun;80(2):585–592. doi: 10.1016/0003-2697(77)90682-0. [DOI] [PubMed] [Google Scholar]
  35. Sanes J. R., Hall Z. W. Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. J Cell Biol. 1979 Nov;83(2 Pt 1):357–370. doi: 10.1083/jcb.83.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shear C. R. Cross-sectional myofibre and myofibril growth in immobilized developing skeletal muscle. J Cell Sci. 1978 Feb;29:297–312. doi: 10.1242/jcs.29.1.297. [DOI] [PubMed] [Google Scholar]
  38. Shear C. R., Goldspink G. Structural and physiological changes associated with the growth of avian fast and slow muscle. J Morphol. 1971 Nov;135(3):351–372. doi: 10.1002/jmor.1051350308. [DOI] [PubMed] [Google Scholar]
  39. Shear C. R., Sankey S. L., Resneck W. G., Bloch R. J. Heterogeneity of the chicken ALD muscle: evidence for a minor, twitch fiber type. Exp Neurol. 1984 Sep;85(3):506–522. doi: 10.1016/0014-4886(84)90027-x. [DOI] [PubMed] [Google Scholar]
  40. Siliciano J. D., Craig S. W. Meta-vinculin--a vinculin-related protein with solubility properties of a membrane protein. Nature. 1982 Dec 9;300(5892):533–535. doi: 10.1038/300533a0. [DOI] [PubMed] [Google Scholar]
  41. Singer I. I. Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts. J Cell Biol. 1982 Feb;92(2):398–408. doi: 10.1083/jcb.92.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Street S. F. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol. 1983 Mar;114(3):346–364. doi: 10.1002/jcp.1041140314. [DOI] [PubMed] [Google Scholar]
  43. Tokuyasu K. T., Dutton A. H., Geiger B., Singer S. J. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7619–7623. doi: 10.1073/pnas.78.12.7619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Trotter J. A., Corbett K., Avner B. P. Structure and function of the murine muscle-tendon junction. Anat Rec. 1981 Oct;201(2):293–302. doi: 10.1002/ar.1092010209. [DOI] [PubMed] [Google Scholar]
  45. Zelená J., Jirmanová I. Ultrastructure of chicken slow muscle after nerve cross union. Exp Neurol. 1973 Feb;38(2):272–285. doi: 10.1016/0014-4886(73)90151-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES