Abstract
The distribution of calsequestrin in rat atrial and ventricular myocardial cells was determined by indirect immunocolloidal gold labeling of ultrathin frozen sections. The results presented show that calsequestrin is confined to the sarcoplasmic reticulum where it is localized in the lumen of the peripheral and the interior junctional sarcoplasmic reticulum as well as in the lumen of the corbular sarcoplasmic reticulum, but absent from the lumen of the network sarcoplasmic reticulum. Comparison of these results with our previous studies on the distribution of the Ca2+ + Mg2+-dependent ATPase of the cardiac sarcoplasmic reticulum show directly that the Ca2+ + Mg2+- dependent ATPase and calsequestrin are confined to distinct regions within the continuous sarcoplasmic reticulum membrane. Assuming that calsequestrin provides the major site of Ca2+ sequestration in the lumen of the sarcoplasmic reticulum, the results presented support the idea that both junctional (interior and peripheral) and specialized nonjunctional (corbular) regions of the sarcoplasmic reticulum are involved in Ca2+ storage and possibly release. Furthermore, the structural differences between the junctional and the corbular sarcoplasmic reticulum support the possibility that Ca2+ storage and/or release from the lumen of the junctional and the corbular sarcoplasmic reticulum are regulated by different physiological signals.
Full Text
The Full Text of this article is available as a PDF (6.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avrameas S., Ternynck T. The cross-linking of proteins with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry. 1969 Jan;6(1):53–66. doi: 10.1016/0019-2791(69)90178-5. [DOI] [PubMed] [Google Scholar]
- Bar-Shani S. [Transfusion associated AIDS]. Harefuah. 1985 Mar 1;108(5):264–266. [PubMed] [Google Scholar]
- Bossen E. H., Sommer J. R., Waugh R. A. Comparative stereology of mouse atria. Tissue Cell. 1981;13(1):71–77. doi: 10.1016/0040-8166(81)90039-2. [DOI] [PubMed] [Google Scholar]
- Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
- Campbell K. P., MacLennan D. H., Jorgensen A. O., Mintzer M. C. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J Biol Chem. 1983 Jan 25;258(2):1197–1204. [PubMed] [Google Scholar]
- Chamberlain B. K., Levitsky D. O., Fleischer S. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. J Biol Chem. 1983 May 25;258(10):6602–6609. [PubMed] [Google Scholar]
- Chiesi M., Ho M. M., Inesi G., Somlyo A. V., Somlyo A. P. Primary role of sarcoplasmic reticulum in phasic contractile activation of cardiac myocytes with shunted myolemma. J Cell Biol. 1981 Dec;91(3 Pt 1):728–742. doi: 10.1083/jcb.91.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolber P. C., Sommer J. R. Corbular sarcoplasmic reticulum of rabbit cardiac muscle. J Ultrastruct Res. 1984 May;87(2):190–196. doi: 10.1016/s0022-5320(84)80078-7. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
- Forbes M. S., Sperelakis N. The membrane systems and cytoskeletal elements of mammalian myocardial cells. Cell Muscle Motil. 1983;3:89–155. doi: 10.1007/978-1-4615-9296-9_5. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Haworth R. A., Berkoff H. A. Modulation of cellular calcium stores in the perfused rat heart by isoproterenol and ryanodine. Circ Res. 1983 Nov;53(5):703–712. doi: 10.1161/01.res.53.5.703. [DOI] [PubMed] [Google Scholar]
- Jones L. R., Cala S. E. Biochemical evidence for functional heterogeneity of cardiac sarcoplasmic reticulum vesicles. J Biol Chem. 1981 Nov 25;256(22):11809–11818. [PubMed] [Google Scholar]
- Jorgensen A. O., Campbell K. P. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J Cell Biol. 1984 Apr;98(4):1597–1602. doi: 10.1083/jcb.98.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen A. O., Kalnins V. I., Zubrzycka E., MacLennan D. H. Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. J Cell Biol. 1977 Jul;74(1):287–298. doi: 10.1083/jcb.74.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen A. O., Kalnins V., MacLennan D. H. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J Cell Biol. 1979 Feb;80(2):372–384. doi: 10.1083/jcb.80.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen A. O., McLeod A. G., Campbell K. P., Denney G. H. Evidence for the presence of calsequestrin in both peripheral and interior regions of sheep Purkinje fibers. Circ Res. 1984 Aug;55(2):267–270. doi: 10.1161/01.res.55.2.267. [DOI] [PubMed] [Google Scholar]
- Jorgensen A. O., Shen A. C., Campbell K. P., MacLennan D. H. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1983 Nov;97(5 Pt 1):1573–1581. doi: 10.1083/jcb.97.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen A. O., Shen A. C., Daly P., MacLennan D. H. Localization of Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in adult rat papillary muscle. J Cell Biol. 1982 Jun;93(3):883–892. doi: 10.1083/jcb.93.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller G. A., Tokuyasu K. T., Dutton A. H., Singer S. J. An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5744–5747. doi: 10.1073/pnas.81.18.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langer G. A. The role of calcium in the control of myocardial contractility: an update. J Mol Cell Cardiol. 1980 Mar;12(3):231–239. doi: 10.1016/0022-2828(80)90037-1. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1975 Apr 21;389(1):51–68. doi: 10.1016/0005-2736(75)90385-5. [DOI] [PubMed] [Google Scholar]
- Núez-Durán H. Sarcoplasmic reticulum in Purkinje cells of the goat heart. A three-dimensional reconstruction. Acta Anat (Basel) 1980;107(2):177–187. [PubMed] [Google Scholar]
- Segretain D., Rambourg A., Clermont Y. Three dimensional arrangement of mitochondria and endoplasmic reticulum in the heart muscle fiber of the rat. Anat Rec. 1981 Jun;200(2):139–151. doi: 10.1002/ar.1092000204. [DOI] [PubMed] [Google Scholar]
- Solaro R. J., Briggs F. N. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding. Circ Res. 1974 Apr;34(4):531–540. doi: 10.1161/01.res.34.4.531. [DOI] [PubMed] [Google Scholar]
- Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. V., Shuman H., Somlyo A. P. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryo sections. J Cell Biol. 1977 Sep;74(3):828–857. doi: 10.1083/jcb.74.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wendt-Gallitelli M. F., Jacob R. Rhythm-dependent role of different calcium stores in cardiac muscle: X-ray microanalysis. J Mol Cell Cardiol. 1982 Aug;14(8):487–492. doi: 10.1016/0022-2828(82)90157-2. [DOI] [PubMed] [Google Scholar]
- Wendt-Gallitelli M. F., Stöhr P., Wolburg H., Schlote W. Cryoultramicrotomy, electron probe microanalysis and STEM of myocardial tissue. Scan Electron Microsc. 1980;(Pt 2):499–509. [PubMed] [Google Scholar]
- Winegrad S. Calcium release from cardiac sarcoplasmic reticulum. Annu Rev Physiol. 1982;44:451–462. doi: 10.1146/annurev.ph.44.030182.002315. [DOI] [PubMed] [Google Scholar]
- Winegrad S. The intracellular site of calcium activaton of contraction in frog skeletal muscle. J Gen Physiol. 1970 Jan;55(1):77–88. doi: 10.1085/jgp.55.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]