Abstract
The possible role of a 140-kD cell surface complex in neural crest adhesion and migration was examined using a monoclonal antibody JG22, first described by Greve and Gottlieb (1982, J. Cell. Biochem. 18:221- 229). The addition of JG22 to neural crest cells in vitro caused a rapid change in morphology of cells plated on either fibronectin or laminin substrates. The cells became round and phase bright, often detaching from the dish or forming aggregates of rounded cells. Other tissues such as somites, notochords, and neural tubes were unaffected by the antibody in vitro even though the JG22 antigen is detectable in embryonic tissue sections on the surface of the myotome, neural tube, and notochord. The effects of the JG22 on neural crest migration in vivo were examined by a new perturbation approach in which both the antibody and the hybridoma cells were microinjected onto neural crest pathways. Hybridoma cells were labeled with a fluorescent cell marker that is nondeleterious and that is preserved after fixation and tissue sectioning. The JG22 antibody and hybridoma cells caused a marked reduction in cranial neural crest migration, a build-up of neural crest cells within the lumen of the neural tube, and some migration along aberrant pathways. Neural crest migration in the trunk was affected to a much lesser extent. In both cranial and trunk regions, a cell free zone of one or more cell diameters was generally observed between neural crest cells and the JG22 hybridoma cells. Two other monoclonal antibodies, 1-B and 1-N, were used as controls. Both 1-B and 1-N bind to bands of the 140-kD complex precipitated by JG22. Neither control antibody affected neural crest adhesion in vitro or neural crest migration in situ. This suggests that the observed alterations in neural crest migration are due to a functional block of the 140-kD complex.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boucaut J. C., Darribère T., Boulekbache H., Thiery J. P. Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. 1984 Jan 26-Feb 1Nature. 307(5949):364–367. doi: 10.1038/307364a0. [DOI] [PubMed] [Google Scholar]
- Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronner-Fraser M., Cohen A. M. Analysis of the neural crest ventral pathway using injected tracer cells. Dev Biol. 1980 Jun 1;77(1):130–141. doi: 10.1016/0012-1606(80)90461-3. [DOI] [PubMed] [Google Scholar]
- Bronner M. E., Cohen A. M. Migratory patterns of cloned neural crest melanocytes injected into host chicken embryos. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1843–1847. doi: 10.1073/pnas.76.4.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. T., Hasegawa E., Hasegawa T., Weinstock C., Yamada K. M. Development of cell surface linkage complexes in cultured fibroblasts. J Cell Biol. 1985 Apr;100(4):1103–1114. doi: 10.1083/jcb.100.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A. M. Independent expression of the adrenergic phenotype by neural crest cells in vitro. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2899–2903. doi: 10.1073/pnas.74.7.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A. M., Konigsberg I. R. A clonal approach to the problem of neural crest determination. Dev Biol. 1975 Oct;46(2):262–280. doi: 10.1016/0012-1606(75)90104-9. [DOI] [PubMed] [Google Scholar]
- Decker C., Greggs R., Duggan K., Stubbs J., Horwitz A. Adhesive multiplicity in the interaction of embryonic fibroblasts and myoblasts with extracellular matrices. J Cell Biol. 1984 Oct;99(4 Pt 1):1398–1404. doi: 10.1083/jcb.99.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duband J. L., Thiery J. P. Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol. 1982 Oct;93(2):308–323. doi: 10.1016/0012-1606(82)90120-8. [DOI] [PubMed] [Google Scholar]
- Greve J. M., Gottlieb D. I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem. 1982;18(2):221–229. doi: 10.1002/jcb.1982.240180209. [DOI] [PubMed] [Google Scholar]
- Löfberg J., Nynäs-McCoy A., Olsson C., Jönsson L., Perris R. Stimulation of initial neural crest cell migration in the axolotl embryo by tissue grafts and extracellular matrix transplanted on microcarriers. Dev Biol. 1985 Feb;107(2):442–459. doi: 10.1016/0012-1606(85)90326-4. [DOI] [PubMed] [Google Scholar]
- Mayer B. W., Jr, Hay E. D., Hynes R. O. Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa. Dev Biol. 1981 Mar;82(2):267–286. doi: 10.1016/0012-1606(81)90451-6. [DOI] [PubMed] [Google Scholar]
- Neff N. T., Lowrey C., Decker C., Tovar A., Damsky C., Buck C., Horwitz A. F. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J Cell Biol. 1982 Nov;95(2 Pt 1):654–666. doi: 10.1083/jcb.95.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newgreen D. Spreading of explants of embryonic chick mesenchymes and epithelia on fibronectin and laminin. Cell Tissue Res. 1984;236(2):265–277. doi: 10.1007/BF00214227. [DOI] [PubMed] [Google Scholar]
- Newgreen D., Thiery J. P. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 1980;211(2):269–291. doi: 10.1007/BF00236449. [DOI] [PubMed] [Google Scholar]
- Oesch B., Birchmeier W. New surface component of fibroblast's focal contacts identified by a monoclonal antibody. Cell. 1982 Dec;31(3 Pt 2):671–679. doi: 10.1016/0092-8674(82)90322-1. [DOI] [PubMed] [Google Scholar]
- Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
- Rovasio R. A., Delouvee A., Yamada K. M., Timpl R., Thiery J. P. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. J Cell Biol. 1983 Feb;96(2):462–473. doi: 10.1083/jcb.96.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiery J. P., Duband J. L., Delouvée A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol. 1982 Oct;93(2):324–343. doi: 10.1016/0012-1606(82)90121-x. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Trelstad R. L. Hyaluronate production and removal during corneal development in the chick. Dev Biol. 1971 Sep;26(1):28–35. doi: 10.1016/0012-1606(71)90104-7. [DOI] [PubMed] [Google Scholar]
- Tucker G. C., Aoyama H., Lipinski M., Tursz T., Thiery J. P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ. 1984 Aug;14(3):223–230. doi: 10.1016/0045-6039(84)90049-6. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Kennedy D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 1984 Jul;99(1 Pt 1):29–36. doi: 10.1083/jcb.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]