Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Aug 1;101(2):402–411. doi: 10.1083/jcb.101.2.402

Three-dimensional reconstruction of thick filaments from Limulus and scorpion muscle

PMCID: PMC2113655  PMID: 2410430

Abstract

We have produced three dimensional reconstructions, at a nominal resolution of 5 nm, of thick filaments from scorpion and Limulus skeletal muscle, both of which have a right-handed four-stranded helical arrangement of projecting subunits. In both reconstructions there was a distinct division of density within projecting subunits consistent with the presence of two myosin heads. Individual myosin heads appeared to be curved, with approximate dimensions of 16 X 5 X 5 nm and seemed more massive at one end. Our reconstructions were consistent with the two heads in a projecting subunit being arranged either antiparallel or parallel to each other and directed away from the bare zone. Although we cannot exclude the second of these interpretations, we favor the first as being more consistent with both filament models and also because it would enable easy phosphorylation of light chains. The antiparallel interpretation requires that the two heads within a subunit derive from different myosin molecules. In either interpretation, the two heads have different orientations relative to the thick filament shaft.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett V. A., Thomas D. D. Saturation transfer electron paramagnetic resonance of spin-labeled muscle fibers. Dependence of myosin head rotational motion on sarcomere length. J Mol Biol. 1984 Oct 15;179(1):83–102. doi: 10.1016/0022-2836(84)90307-3. [DOI] [PubMed] [Google Scholar]
  2. DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
  3. Elliott A., Offer G. Shape and flexibility of the myosin molecule. J Mol Biol. 1978 Aug 25;123(4):505–519. doi: 10.1016/0022-2836(78)90204-8. [DOI] [PubMed] [Google Scholar]
  4. Flamig D. P., Cusanovich M. A. Aggregation-linked kinetic heterogeneity in bovine cardiac myosin subfragment 1. Biochemistry. 1981 Nov 24;20(24):6760–6767. doi: 10.1021/bi00527a004. [DOI] [PubMed] [Google Scholar]
  5. Flicker P. F., Wallimann T., Vibert P. Electron microscopy of scallop myosin. Location of regulatory light chains. J Mol Biol. 1983 Sep 25;169(3):723–741. doi: 10.1016/s0022-2836(83)80167-3. [DOI] [PubMed] [Google Scholar]
  6. Hardwicke P. M., Hanson J. Separation of thick and thin myofilaments. J Mol Biol. 1971 Aug 14;59(3):509–516. doi: 10.1016/0022-2836(71)90314-7. [DOI] [PubMed] [Google Scholar]
  7. Kensler R. W., Levine R. J. An electron microscopic and optical diffraction analysis of the structure of Limulus telson muscle thick filaments. J Cell Biol. 1982 Feb;92(2):443–451. doi: 10.1083/jcb.92.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kensler R. W., Levine R. J. Determination of the handedness of the crossbridge helix of Limulus thick filaments. J Muscle Res Cell Motil. 1982 Sep;3(3):349–361. doi: 10.1007/BF00713042. [DOI] [PubMed] [Google Scholar]
  9. Kensler R. W., Levine R. J., Stewart M. Electron microscopic and optical diffraction analysis of the structure of scorpion muscle thick filaments. J Cell Biol. 1985 Aug;101(2):395–401. doi: 10.1083/jcb.101.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kensler R. W., Stewart M. Frog skeletal muscle thick filaments are three-stranded. J Cell Biol. 1983 Jun;96(6):1797–1802. doi: 10.1083/jcb.96.6.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine R. J., Kensler R. W., Reedy M. C., Hofmann W., King H. A. Structure and paramyosin content of tarantula thick filaments. J Cell Biol. 1983 Jul;97(1):186–195. doi: 10.1083/jcb.97.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McLachlan A. D., Karn J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature. 1982 Sep 16;299(5880):226–231. doi: 10.1038/299226a0. [DOI] [PubMed] [Google Scholar]
  13. Mendelson R. A., Wagner P. D. X-ray scattering by single-headed heavy meromyosin. Cleavage of the myosin head from the rod does not change its shape. J Mol Biol. 1984 Jul 25;177(1):153–171. doi: 10.1016/0022-2836(84)90062-7. [DOI] [PubMed] [Google Scholar]
  14. Mendelson R., Kretzschmar K. M. Structure of myosin subfragment 1 from low-angle X-ray scattering. Biochemistry. 1980 Aug 19;19(17):4103–4108. doi: 10.1021/bi00558a031. [DOI] [PubMed] [Google Scholar]
  15. Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
  16. Morel J. E., Garrigos M. Dimerization of the myosin heads in solution. Biochemistry. 1982 May 25;21(11):2679–2686. doi: 10.1021/bi00540a016. [DOI] [PubMed] [Google Scholar]
  17. Sellers J. R. Phosphorylation-dependent regulation of Limulus myosin. J Biol Chem. 1981 Sep 10;256(17):9274–9278. [PubMed] [Google Scholar]
  18. Stewart M., Kensler R. W., Levine R. J. Structure of Limulus telson muscle thick filaments. J Mol Biol. 1981 Dec 15;153(3):781–790. doi: 10.1016/0022-2836(81)90418-6. [DOI] [PubMed] [Google Scholar]
  19. Taylor K. A., Amos L. A. A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments. J Mol Biol. 1981 Apr 5;147(2):297–324. doi: 10.1016/0022-2836(81)90442-3. [DOI] [PubMed] [Google Scholar]
  20. Vibert P., Craig R. Electron microscopy and image analysis of myosin filaments from scallop striated muscle. J Mol Biol. 1983 Apr 5;165(2):303–320. doi: 10.1016/s0022-2836(83)80259-9. [DOI] [PubMed] [Google Scholar]
  21. Vibert P., Craig R. Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin. J Mol Biol. 1982 May 15;157(2):299–319. doi: 10.1016/0022-2836(82)90236-4. [DOI] [PubMed] [Google Scholar]
  22. Wakabayashi T., Toyoshima C. Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. II. The multi-domain structure of actin-myosin S1 complex. J Biochem. 1981 Sep;90(3):683–701. doi: 10.1093/oxfordjournals.jbchem.a133523. [DOI] [PubMed] [Google Scholar]
  23. Walzthöny D., Bähler M., Eppenberger H. M., Wallimann T., Engel A. Unshadowed myosin molecules: STEM mass-maps of myosin heads. EMBO J. 1984 Nov;3(11):2621–2626. doi: 10.1002/j.1460-2075.1984.tb02183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wray J. S. Organization of myosin in invertebrate thick filaments. Soc Gen Physiol Ser. 1982;37:29–36. [PubMed] [Google Scholar]
  25. Wray J. S., Vibert P. J., Cohen C. Cross-bridge arrangements in Limulus muscle. J Mol Biol. 1974 Sep 15;88(2):343–348. doi: 10.1016/0022-2836(74)90486-0. [DOI] [PubMed] [Google Scholar]
  26. Wray J. S., Vibert P. J., Cohen C. Diversity of cross-bridge configurations in invertebrate muscles. Nature. 1975 Oct 16;257(5527):561–564. doi: 10.1038/257561a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES