Abstract
We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann L., Salpeter M. M. Absolute sensitivity of electron microscope radioautography. J Cell Biol. 1967 May;33(2):299–305. doi: 10.1083/jcb.33.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
- Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
- Coleman R., Bell R. M. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles. J Cell Biol. 1978 Jan;76(1):245–253. doi: 10.1083/jcb.76.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dvorak A. M., Dvorak H. F., Peters S. P., Shulman E. S., MacGlashan D. W., Jr, Pyne K., Harvey V. S., Galli S. J., Lichtenstein L. M. Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol. 1983 Dec;131(6):2965–2976. [PubMed] [Google Scholar]
- Dvorak A. M., Hammond M. E., Morgan E. S., Dvorak H. F. Ultrastructural studies of macrophages: in vitro removal of cell coat with macrophage inhibition factor (MIF)-containing lymphocyte culture supernatants; chloroform extraction, phospholipase digestion, and autoradiographic studies. J Reticuloendothel Soc. 1980 Feb;27(2):119–142. [PubMed] [Google Scholar]
- Esko J. D., Matsuoka K. Y. Biosynthesis of phosphatidylcholine from serum phospholipids in Chinese hamster ovary cells deprived of choline. J Biol Chem. 1983 Mar 10;258(5):3051–3057. [PubMed] [Google Scholar]
- Hoak J. C., Spector A. A., Fry G. L., Barnes B. C. Localization of free fatty acids taken up by human platelets. Blood. 1972 Jul;40(1):16–22. [PubMed] [Google Scholar]
- Holub B. J., Kuksis A. Metabolism of molecular species of diacylglycerophospholipids. Adv Lipid Res. 1978;16:1–125. doi: 10.1016/b978-0-12-024916-9.50007-x. [DOI] [PubMed] [Google Scholar]
- Keenan T. W., Morré D. J. Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry. 1970 Jan 6;9(1):19–25. doi: 10.1021/bi00803a003. [DOI] [PubMed] [Google Scholar]
- Laposata M., Prescott S. M., Bross T. E., Majerus P. W. Development and characterization of a tissue culture cell line with essential fatty acid deficiency. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7654–7658. doi: 10.1073/pnas.79.24.7654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majerus P. W., Prescott S. M., Hofmann S. L., Neufeld E. J., Wilson D. B. Uptake and release of arachidonate by platelets. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:45–52. [PubMed] [Google Scholar]
- Mercurio A. M., Holtzman E. Ultrastructural localization of glycerolipid synthesis in rod cells of the isolated frog retina. J Neurocytol. 1982 Apr;11(2):295–322. doi: 10.1007/BF01258248. [DOI] [PubMed] [Google Scholar]
- Neufeld E. J., Bross T. E., Majerus P. W. A mutant HSDM1C1 fibrosarcoma line selected for defective eicosanoid precursor uptake lacks arachidonate-specific acyl-CoA synthetase. J Biol Chem. 1984 Feb 10;259(3):1986–1992. [PubMed] [Google Scholar]
- Neufeld E. J., Sprecher H., Evans R. W., Majerus P. W. Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase. J Lipid Res. 1984 Mar;25(3):288–293. [PubMed] [Google Scholar]
- Neufeld E. J., Wilson D. B., Sprecher H., Majerus P. W. High affinity esterification of eicosanoid precursor fatty acids by platelets. J Clin Invest. 1983 Jul;72(1):214–220. doi: 10.1172/JCI110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagano R. E., Longmuir K. J., Martin O. C., Struck D. K. Metabolism and intracellular localization of a fluorescently labeled intermediate in lipid biosynthesis within cultured fibroblasts. J Cell Biol. 1981 Dec;91(3 Pt 1):872–877. doi: 10.1083/jcb.91.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearse B. M., Bretscher M. S. Membrane recycling by coated vesicles. Annu Rev Biochem. 1981;50:85–101. doi: 10.1146/annurev.bi.50.070181.000505. [DOI] [PubMed] [Google Scholar]
- Rollins T. E., Smith W. L. Subcellular localization of prostaglandin-forming cyclooxygenase in Swiss mouse 3T3 fibroblasts by electron microscopic immunocytochemistry. J Biol Chem. 1980 May 25;255(10):4872–4875. [PubMed] [Google Scholar]
- Saffitz J. E., Corr P. B., Lee B. I., Gross R. W., Williamson E. K., Sobel B. E. Pathophysiologic concentrations of lysophosphoglycerides quantified by electron microscopic autoradiography. Lab Invest. 1984 Mar;50(3):278–286. [PubMed] [Google Scholar]
- Saffitz J. E., Gross R. W., Williamson J. R., Sobel B. E. Autoradiography of phosphatidyl choline. J Histochem Cytochem. 1981 Mar;29(3):371–378. doi: 10.1177/29.3.7240719. [DOI] [PubMed] [Google Scholar]
- Salpeter M. M., McHenry F. A., Salpeter E. E. Resolution of electron microscope autoradiography. IV. Application to analysis of autoradiographs. J Cell Biol. 1978 Jan;76(1):127–145. doi: 10.1083/jcb.76.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samuelsson B. Prostaglandins, thromboxanes, and leukotrienes: formation and biological roles. Harvey Lect. 1979 1980;75:1–40. [PubMed] [Google Scholar]
- Schremmer J. M., Blank M. L., Wykle R. L. Bradykinin-stimulated release of [3H]arachidonic acid from phospholipids of HSDM1C1 cells: comparison of diacyl phospholipids and plasmalogens as sources of prostaglandin precursors. Prostaglandins. 1979 Oct;18(4):491–505. doi: 10.1016/0090-6980(79)90018-2. [DOI] [PubMed] [Google Scholar]
- Sleight R. G., Pagano R. E. Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus. J Cell Biol. 1984 Aug;99(2):742–751. doi: 10.1083/jcb.99.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
- Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]