Abstract
The dwarf mutation in mice interferes with the development of those anterior pituitary cells responsible for production of thyroid stimulating hormone, growth hormone, and prolactin. Myosin isozyme transitions in both cardiac and skeletal muscle were also found to be affected in this mutant. Electrophoresis of native myosins demonstrated that the fetal (V3) to adult (V1) ventricular cardiac isozyme transition was completely blocked in dwarf mice; in contrast, the neonatal to adult fast myosin transition in hind limb skeletal muscle was slowed but not totally inhibited. The persistence of neonatal myosin heavy chain for up to 55-75 d after birth in dwarf mice, as compared with 16 d in normal mice, was directly demonstrated by polypeptide and immunopolypeptide mapping. Morphological examination of 18-36-d-old dwarf skeletal muscles by optical and electron microscopy revealed a relative immaturity, but no signs of gross pathology were evident. Immunocytochemical analysis showed that the abnormal persistence of neonatal myosin occurs in most of the fibers. Multiple injections of thyroxine restored a normal isozyme complement to both cardiac and skeletal muscles within 11-15 d. Therefore, the effects of the dwarf mutation on myosin isozymes can be explained by the lack of thyroid hormone in these animals. Because the synthesis of growth hormone is not stimulated by thyroid hormone in dwarf mice as it would be in normal animals, these results demonstrate that thyroid hormone promotes myosin isozyme transitions independent of growth hormone production.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTKE A. HISTOLOGY OF THE ANTERIOR HYPOPHYSIS, THYROID AND GONADS OF TWO TYPES OF DWARF MICE. Anat Rec. 1964 Jun;149:225–235. doi: 10.1002/ar.1091490206. [DOI] [PubMed] [Google Scholar]
- Bartke A. The response of dwarf mice to murine thyroid-stimulating hormone. Gen Comp Endocrinol. 1968 Aug;11(1):246–247. doi: 10.1016/0016-6480(68)90124-x. [DOI] [PubMed] [Google Scholar]
- Bartke A. The response of two types of dwarf mice to growth hormone, thyrotropin, and thyroxine. Gen Comp Endocrinol. 1965 Aug;5(4):418–426. doi: 10.1016/0016-6480(65)90102-4. [DOI] [PubMed] [Google Scholar]
- Bugaisky L. B., Butler-Browne G. S., Sell S. M., Whalen R. G. Structural differences in the subfragment 1 and rod portions of myosin isozymes from adult and developing rat skeletal muscles. J Biol Chem. 1984 Jun 10;259(11):7212–7218. [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Butler-Browne G. S., Bugaisky L. B., Cuénoud S., Schwartz K., Whalen R. G. Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature. 1982 Oct 28;299(5886):830–833. doi: 10.1038/299830a0. [DOI] [PubMed] [Google Scholar]
- Butler-Browne G. S., Herlicoviez D., Whalen R. G. Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett. 1984 Jan 23;166(1):71–75. doi: 10.1016/0014-5793(84)80047-2. [DOI] [PubMed] [Google Scholar]
- Butler-Browne G. S., Whalen R. G. Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol. 1984 Apr;102(2):324–334. doi: 10.1016/0012-1606(84)90197-0. [DOI] [PubMed] [Google Scholar]
- Chatterjee B., Demyan W. F., Roy A. K. Interacting role of thyroxine and growth hormone in the hepatic synthesis of alpha 2u-globulin and its messenger RNA. J Biol Chem. 1983 Jan 10;258(1):688–692. [PubMed] [Google Scholar]
- Cheng T. C., Beamer W. G., Phillips J. A., 3rd, Bartke A., Mallonee R. L., Dowling C. Etiology of growth hormone deficiency in little, Ames, and Snell dwarf mice. Endocrinology. 1983 Nov;113(5):1669–1678. doi: 10.1210/endo-113-5-1669. [DOI] [PubMed] [Google Scholar]
- Chizzonite R. A., Everett A. W., Clark W. A., Jakovcic S., Rabinowitz M., Zak R. Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. Change in their content during normal growth and after treatment with thyroid hormone. J Biol Chem. 1982 Feb 25;257(4):2056–2065. [PubMed] [Google Scholar]
- Chizzonite R. A., Zak R. Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem. 1984 Oct 25;259(20):12628–12632. [PubMed] [Google Scholar]
- Cullen M. J., Fulthorpe J. J. Stages in fibre breakdown in Duchenne muscular dystrophy. An electron-microscopic study. J Neurol Sci. 1975 Feb;24(2):179–200. doi: 10.1016/0022-510x(75)90232-4. [DOI] [PubMed] [Google Scholar]
- Friedman D. J., Umeda P. K., Sinha A. M., Hsu H. J., Jakovcic S., Rabinowitz M. Characterization of genomic clones specifying rabbit alpha- and beta-ventricular myosin heavy chains. Proc Natl Acad Sci U S A. 1984 May;81(10):3044–3048. doi: 10.1073/pnas.81.10.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gambke B., Lyons G. E., Haselgrove J., Kelly A. M., Rubinstein N. A. Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles. FEBS Lett. 1983 Jun 13;156(2):335–339. doi: 10.1016/0014-5793(83)80524-9. [DOI] [PubMed] [Google Scholar]
- Hervas F., Morreale de Escobar G., Escobar Del Rey F. Rapid effects of single small doses of L-thyroxine and triiodo-L-thyronine on growth hormone, as studied in the rat by radioimmunoassy. Endocrinology. 1975 Jul;97(1):91–101. doi: 10.1210/endo-97-1-91. [DOI] [PubMed] [Google Scholar]
- Hoh J. F., Yeoh G. P. Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles. Nature. 1979 Jul 26;280(5720):321–323. doi: 10.1038/280321a0. [DOI] [PubMed] [Google Scholar]
- Hoh J. F., Yeoh G. P., Thomas M. A., Higginbottom L. Structural differences in the heavy chains of rat ventricular myosin isoenzymes. FEBS Lett. 1979 Jan 15;97(2):330–334. doi: 10.1016/0014-5793(79)80115-5. [DOI] [PubMed] [Google Scholar]
- Jolesz F., Sreter F. A. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531–552. doi: 10.1146/annurev.ph.43.030181.002531. [DOI] [PubMed] [Google Scholar]
- Mahdavi V., Chambers A. P., Nadal-Ginard B. Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci U S A. 1984 May;81(9):2626–2630. doi: 10.1073/pnas.81.9.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittra I. Somatomedins and proteolytic bioactivation of prolactin and growth hormone. Cell. 1984 Sep;38(2):347–348. doi: 10.1016/0092-8674(84)90488-4. [DOI] [PubMed] [Google Scholar]
- Paladini A. C., Peña C., Poskus E. Molecular biology of growth hormone. CRC Crit Rev Biochem. 1983;15(1):25–56. doi: 10.3109/10409238309102800. [DOI] [PubMed] [Google Scholar]
- Periasamy M., Wieczorek D. F., Nadal-Ginard B. Characterization of a developmentally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J Biol Chem. 1984 Nov 10;259(21):13573–13578. [PubMed] [Google Scholar]
- Roux M., Bartke A., Dumont F., Dubois M. P. Immunohistological study of the anterior pituitary gland - pars distalis and pars intermedia - in dwarf mice. Cell Tissue Res. 1982;223(2):415–420. doi: 10.1007/BF01258498. [DOI] [PubMed] [Google Scholar]
- Rubinstein N., Mabuchi K., Pepe F., Salmons S., Gergely J., Sreter F. Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol. 1978 Oct;79(1):252–261. doi: 10.1083/jcb.79.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
- Samuel J. L., Rappaport L., Mercadier J. J., Lompre A. M., Sartore S., Triban C., Schiaffino S., Schwartz K. Distribution of myosin isozymes within single cardiac cells. An immunohistochemical study. Circ Res. 1983 Feb;52(2):200–209. doi: 10.1161/01.res.52.2.200. [DOI] [PubMed] [Google Scholar]
- Schwartz K., Lompre A. M., Bouveret P., Wisnewsky C., Whalen R. G. Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J Biol Chem. 1982 Dec 10;257(23):14412–14418. [PubMed] [Google Scholar]
- Seo H., Wunderlich C., Vassart G., Refetoff S. Growth hormone responses to thyroid hormone in the neonatal rat: resistance and anamnestic response. J Clin Invest. 1981 Feb;67(2):569–574. doi: 10.1172/JCI110068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slabaugh M. B., Hoffman L. M., Lieberman M. E., Rutledge J. J., Gorski J. Genomic organization of prolactin and growth hormone coding sequences in dwarf and normal mice. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):289–297. doi: 10.1016/0303-7207(82)90127-7. [DOI] [PubMed] [Google Scholar]
- Slabaugh M. B., Lieberman M. E., Rutledge J. J., Gorski J. Growth hormone and prolactin synthesis in normal and homozygous Snell and Ames dwarf mice. Endocrinology. 1981 Oct;109(4):1040–1046. doi: 10.1210/endo-109-4-1040. [DOI] [PubMed] [Google Scholar]
- Snell G. D. DWARF, A NEW MENDELIAN RECESSIVE CHARACTER OF THE HOUSE MOUSE. Proc Natl Acad Sci U S A. 1929 Sep 15;15(9):733–734. doi: 10.1073/pnas.15.9.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weydert A., Daubas P., Caravatti M., Minty A., Bugaisky G., Cohen A., Robert B., Buckingham M. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem. 1983 Nov 25;258(22):13867–13874. [PubMed] [Google Scholar]
- Whalen R. G., Johnstone D., Bryers P. S., Butler-Browne G. S., Ecob M. S., Jaros E. A developmentally regulated disappearance of slow myosin in fast-type muscles of the mouse. FEBS Lett. 1984 Nov 5;177(1):51–56. doi: 10.1016/0014-5793(84)80979-5. [DOI] [PubMed] [Google Scholar]
- Whalen R. G. Myosin isoenzymes as molecular markers for muscle physiology. J Exp Biol. 1985 Mar;115:43–53. doi: 10.1242/jeb.115.1.43. [DOI] [PubMed] [Google Scholar]
- Whalen R. G., Schwartz K., Bouveret P., Sell S. M., Gros F. Contractile protein isozymes in muscle development: identification of an embryonic form of myosin heavy chain. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5197–5201. doi: 10.1073/pnas.76.10.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]
- Wilson D. B., Christensen E. Prenatal cytodifferentiation in the pars distalis of the dwarf mutant mouse. Acta Anat (Basel) 1982;114(3):259–267. doi: 10.1159/000145595. [DOI] [PubMed] [Google Scholar]
- Wydro R. M., Nguyen H. T., Gubits R. M., Nadal-Ginard B. Characterization of sarcomeric myosin heavy chain genes. J Biol Chem. 1983 Jan 10;258(1):670–678. [PubMed] [Google Scholar]
- Zatz M., Betti R. T., Levy J. A. Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency. Am J Med Genet. 1981;10(3):301–304. doi: 10.1002/ajmg.1320100313. [DOI] [PubMed] [Google Scholar]
- van Buul-Offers S., Hackeng W. H., Schopman W. Thyroxine and triiodothyronine levels in Snell mice. Acta Endocrinol (Copenh) 1983 Mar;102(3):396–409. doi: 10.1530/acta.0.1020396. [DOI] [PubMed] [Google Scholar]
