Abstract
Two N-acetylgalactosamine-reactive lectins, Helix pomatia (HPA) and Dolichos biflorus (DBA), were used to study the energies involved in cell-cell interactions through the specific binding of these lectins to their membrane receptors on genotype AO human erythrocytes (red blood cells) (RBCs). The energy required to dissociate a unit of aggregated membrane area (gamma d) of two RBCs bridged by lectin molecules was determined from the shear force needed to dissociate two-cell aggregates in a flow channel. When HPA were used as bridging molecules, gamma d (0.4 X 10(-4) to 3.8 X 10(-4) dyn/cm) was proportional to the density (D = 175 to 1,060 molecules/micron 2) of HPA molecules bound on the RBC membrane. A similar gamma d/D ratio was also obtained for DBA. These results indicate that the number of lectin molecules bound on the interface plays an important role in determining the energy required for cell-cell dissociation. The aggregation energy per unit membrane area (gamma a) in lectin-induced aggregates was calculated from the degree of encapsulation of a lectin-bound, heat-sphered human RBC by a normal discoid RBC. A minimum of approximately 1,800 HPA molecules/micron 2 on the spheres was required to form stable aggregates with the RBC. By using spheres having a surface HPA density of 1,830 to 2,540 molecules/micron 2, or 1.1-1.5 X 10(12) combining sites/cm2, the gamma a value for HPA-induced aggregation was found to be 2.2 X 10(-3) dyn/cm. This higher value of gamma a than gamma d has been explained on the basis of several differences in aggregation and disaggregation processes. The gamma a value for DBA-induced aggregation was not obtainable by the sphere encapsulation method because of the relative low D values. A comparison of the present results with the published value of the free energy change of 5 kcal/mol for the interactions of HPA and DBA with their ligands suggests that only a small fraction of the lectin molecules bound to RBC surface participate in the bridging of adjacent cells.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chien S., Jan K. M. Red cell aggregation by macromolecules: roles of surface adsorption and electrostatic repulsion. J Supramol Struct. 1973;1(4):385–409. doi: 10.1002/jss.400010418. [DOI] [PubMed] [Google Scholar]
- Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chien S., Sung L. A., Kim S., Burke A. M., Usami S. Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res. 1977 May;13(3):327–333. doi: 10.1016/0026-2862(77)90098-x. [DOI] [PubMed] [Google Scholar]
- Chien S., Sung L. A., Simchon S., Lee M. M., Jan K. M., Skalak R. Energy balance in red cell interactions. Ann N Y Acad Sci. 1983;416:190–206. doi: 10.1111/j.1749-6632.1983.tb35189.x. [DOI] [PubMed] [Google Scholar]
- Chien S., Usami S., Dellenback R. J., Gregersen M. I., Nanninga L. B., Guest M. M. Blood viscosity: influence of erythrocyte aggregation. Science. 1967 Aug 18;157(3790):829–831. doi: 10.1126/science.157.3790.829. [DOI] [PubMed] [Google Scholar]
- Etzler M. E., Gupta S., Borrebaeck C. Carbohydrate binding properties of th Dolichos biflorus lectin and its subunits. J Biol Chem. 1981 Mar 10;256(5):2367–2370. [PubMed] [Google Scholar]
- Etzler M. E., Kabat E. A. Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry. 1970 Feb 17;9(4):869–877. doi: 10.1021/bi00806a022. [DOI] [PubMed] [Google Scholar]
- Evans E. A., La Celle P. L. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood. 1975 Jan;45(1):29–43. [PubMed] [Google Scholar]
- Evans E., Buxbaum K. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation. Biophys J. 1981 Apr;34(1):1–12. doi: 10.1016/S0006-3495(81)84834-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Fung Y. C. Improved measurements of the erythrocyte geometry. Microvasc Res. 1972 Oct;4(4):335–347. doi: 10.1016/0026-2862(72)90069-6. [DOI] [PubMed] [Google Scholar]
- Evans E., Leung A. Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding. J Cell Biol. 1984 Apr;98(4):1201–1208. doi: 10.1083/jcb.98.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsmith H. L., Gold P., Shuster J., Takamura K. Interactions between sphered human red cells in tube flow: technique for measuring the strength of antigen--antibody bonds. Microvasc Res. 1982 Mar;23(2):231–238. doi: 10.1016/0026-2862(82)90067-x. [DOI] [PubMed] [Google Scholar]
- Hammarström S., Kabat E. A. Purification and characterization of a blood-group A reactive hemagglutinin from the snail Helix pomatia and a study of its combining site. Biochemistry. 1969 Jul;8(7):2696–2705. doi: 10.1021/bi00835a002. [DOI] [PubMed] [Google Scholar]
- Hammarström S., Kabat E. A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry. 1971 Apr 27;10(9):1684–1692. doi: 10.1021/bi00785a028. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Mohandas N., Blackshear P. L., Jr Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973 Aug;13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe C., Lee L. T. Virus-erythrocyte interactions. Adv Virus Res. 1972;17:1–50. doi: 10.1016/S0065-3527(08)60746-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kisailus E. C., Kabat E. A. Immunochemical studies on blood groups LXVI. Competitive binding assays of A1 and A2 blood group substances with insolubilized anti-A serum and insolubilized A agglutinin from Dolichos biflorus. J Exp Med. 1978 Mar 1;147(3):830–843. doi: 10.1084/jem.147.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovrien R. E., Anderson R. A. Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology controlling agent and as a morphology protective agent for the human erythrocyte. J Cell Biol. 1980 Jun;85(3):534–548. doi: 10.1083/jcb.85.3.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pereira M. E., Kabat E. A. Immunochemical studies on lectins and their application to the fractionation of blood group substances and cells. CRC Crit Rev Immunol. 1979 Nov;1(1):33–78. [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Skalak R., Zarda P. R., Jan K. M., Chien S. Mechanics of Rouleau formation. Biophys J. 1981 Sep;35(3):771–781. doi: 10.1016/S0006-3495(81)84826-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward J. G., Orn A., Harmon R. C., Goodenow R. S., Hood L., Frelinger J. A. Specific recognition of the product of a transferred major histocompatibility complex gene by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3613–3617. doi: 10.1073/pnas.79.11.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]