Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Aug 1;101(2):560–567. doi: 10.1083/jcb.101.2.560

Alterations in chromatin conformation are accompanied by reorganization of nonchromatin domains that contain U-snRNP protein p28 and nuclear protein p107

PMCID: PMC2113679  PMID: 2991302

Abstract

The intranuclear distribution of nuclear matrix-associated protein p107 and the 28-kD Sm antigen of U-snRNPs have been studied using double- label immunofluorescence and immunoperoxidase electron microscopy. In interphase nuclei of HeLa cells, Novikoff hepatoma cells, and rat kangaroo kidney cells, p107 was confined to discrete interchromatin domains. The domains had an irregular contour, with an average diameter of 1-1.5 micron. Each domain appeared to be composed of interconnected granules. The Sm antigen colocalized and appeared concentrated in these domains but also showed some general nucleoplasmic distribution. During mitosis, the interchromatin domains disassembled such that the Sm portion redistributed to the perichromosomal and spindle regions and the p107 component redistributed throughout the mitotic cytoplasm. During anaphase, p107 assembled into discrete clusters throughout the mitotic cytoplasm. The Sm antigen was not a component of these clusters. Double-label immunofluorescence with anti-p107 and the anti- DNA tight-binding protein, AhNa1, showed that the extranuclear p107 domains assumed an interchromatin localization only after the chromosomes had decondensed. The correlation between chromosome decondensation and the occurrence of p107 within interchromatin domains was also observed during chicken erythrocyte nuclear reactivation. We propose that the discrete interchromatin domains that contain p107 and p28 may be important for processing and splicing of RNA and that their structural assembly within nuclei is sensitive to the presence of the transcriptionally active conformation of chromatin.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appels R., Bolund L., Ringertz N. R. Biochemical analysis of reactivated chick erythrocyte nuclei isolated from chick-HeLa heterokaryons. J Mol Biol. 1974 Aug 5;87(2):339–355. doi: 10.1016/0022-2836(74)90154-5. [DOI] [PubMed] [Google Scholar]
  2. Appels R., Ringertz N. R. Chemical and structural changes within chick erythrocyte nuclei introduced into mammalian cells by cell fusion. Curr Top Dev Biol. 1975;9:137–166. doi: 10.1016/s0070-2153(08)60028-9. [DOI] [PubMed] [Google Scholar]
  3. Bachellerie J. P., Puvion E., Zalta J. P. Ultrastructural organization and biochemical characterization of chromatin - RNA - protein complexes isolated from mammalian cell nuclei. Eur J Biochem. 1975 Oct 15;58(2):327–337. doi: 10.1111/j.1432-1033.1975.tb02379.x. [DOI] [PubMed] [Google Scholar]
  4. Berezney R., Coffey D. S. The nuclear protein matrix: isolation, structure, and functions. Adv Enzyme Regul. 1976;14:63–100. doi: 10.1016/0065-2571(76)90008-x. [DOI] [PubMed] [Google Scholar]
  5. Berezney R. Fractionation of the nuclear matrix. I. Partial separation into matrix protein fibrils and a residual ribonucleoprotein fraction. J Cell Biol. 1980 Jun;85(3):641–650. doi: 10.1083/jcb.85.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969 May;27(3):250–265. doi: 10.1016/s0022-5320(69)80016-x. [DOI] [PubMed] [Google Scholar]
  7. Bhorjee J. S., Barclay S. L., Wedrychowski A., Smith A. M. Monoclonal antibodies specific for tight-binding human chromatin antigens reveal structural rearrangements within the nucleus during the cell cycle. J Cell Biol. 1983 Aug;97(2):389–396. doi: 10.1083/jcb.97.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Catino J. J., Yeoman L. C., Mandel M., Busch H. Characterization of DNA binding protein from rat liver chromatin which decreases during growth. Biochemistry. 1978 Mar 21;17(6):983–987. doi: 10.1021/bi00599a006. [DOI] [PubMed] [Google Scholar]
  9. Cepko C. L., Sharp P. A. Assembly of adenovirus major capsid protein is mediated by a nonvirion protein. Cell. 1982 Dec;31(2 Pt 1):407–415. doi: 10.1016/0092-8674(82)90134-9. [DOI] [PubMed] [Google Scholar]
  10. Ciejek E. M., Nordstrom J. L., Tsai M. J., O'Malley B. W. Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry. 1982 Sep 28;21(20):4945–4953. doi: 10.1021/bi00263a018. [DOI] [PubMed] [Google Scholar]
  11. Clevenger C. V., Epstein A. L. Identification of a nuclear protein component of interchromatin granules using a monoclonal antibody and immunogold electron microscopy. Exp Cell Res. 1984 Mar;151(1):194–207. doi: 10.1016/0014-4827(84)90368-9. [DOI] [PubMed] [Google Scholar]
  12. De Robertis E. M., Lienhard S., Parisot R. F. Intracellular transport of microinjected 5S and small nuclear RNAs. Nature. 1982 Feb 18;295(5850):572–577. doi: 10.1038/295572a0. [DOI] [PubMed] [Google Scholar]
  13. Fakan S., Bernhard W. Nuclear labelling after prolonged 3H-uridine incorporation as visualized by high resolution autoradiography. Exp Cell Res. 1973 Jun;79(2):431–444. doi: 10.1016/0014-4827(73)90463-1. [DOI] [PubMed] [Google Scholar]
  14. Fakan S., Nobis P. Ultrastructural localization of transcription sites and of RNA distribution during the cell cycle of synchronized CHO cells. Exp Cell Res. 1978 May;113(2):327–337. doi: 10.1016/0014-4827(78)90373-7. [DOI] [PubMed] [Google Scholar]
  15. Fakan S., Puvion E., Sphor G. Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp Cell Res. 1976 Apr;99(1):155–164. doi: 10.1016/0014-4827(76)90690-x. [DOI] [PubMed] [Google Scholar]
  16. Fuchs J. P., Jacob M. Fractionation of constituents of ribonucleoproteins containing heterogeneous nuclear ribonucleic acid. Biochemistry. 1979 Sep 18;18(19):4202–4208. doi: 10.1021/bi00586a026. [DOI] [PubMed] [Google Scholar]
  17. Gallinaro H., Puvion E., Kister L., Jacob M. Nuclear matrix and hnRNP share a common structural constituent associated with premessenger RNA. EMBO J. 1983;2(6):953–960. doi: 10.1002/j.1460-2075.1983.tb01527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herman R., Weymouth L., Penman S. Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei. J Cell Biol. 1978 Sep;78(3):663–674. doi: 10.1083/jcb.78.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hernandez-Verdun D., Bouteille M. Nucleologenesis in chick erythrocyte nuclei reactivated by cell fusion. J Ultrastruct Res. 1979 Nov;69(2):164–179. doi: 10.1016/s0022-5320(79)90107-2. [DOI] [PubMed] [Google Scholar]
  20. Jones R. E., Okamura C. S., Martin T. E. Immunofluorescent localization of the proteins of nuclear ribonucleoprotein complexes. J Cell Biol. 1980 Jul;86(1):235–243. doi: 10.1083/jcb.86.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krohne G., Debus E., Osborn M., Weber K., Franke W. W. A monoclonal antibody against nuclear lamina proteins reveals cell type-specificity in Xenopus laevis. Exp Cell Res. 1984 Jan;150(1):47–59. doi: 10.1016/0014-4827(84)90700-6. [DOI] [PubMed] [Google Scholar]
  22. LaFond R. E., Woodcock H., Woodcock C. L., Kundahl E. R., Lucas J. J. Generation of an internal matrix in mature avian erythrocyte nuclei during reactivation in cytoplasts. J Cell Biol. 1983 Jun;96(6):1815–1819. doi: 10.1083/jcb.96.6.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ladda R. L., Estensen R. D. Introduction of a heterologous nucleus into enucleated cytoplasms of cultured mouse L-cells. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1528–1533. doi: 10.1073/pnas.67.3.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lerner E. A., Lerner M. R., Janeway C. A., Jr, Steitz J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981 May;78(5):2737–2741. doi: 10.1073/pnas.78.5.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lipsich L. A., Lucas J. J., Kates J. R. Cell cycle dependence of the reactivation of chick erythrocyte nuclei after transplantation into mouse L929 cell cytoplasts. J Cell Physiol. 1978 Nov;97(2):199–207. doi: 10.1002/jcp.1040970209. [DOI] [PubMed] [Google Scholar]
  26. Lohka M. J., Masui Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J Cell Biol. 1984 Apr;98(4):1222–1230. doi: 10.1083/jcb.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Long B. H., Huang C. Y., Pogo A. O. Isolation and characterization of the nuclear matrix in Friend erythroleukemia cells: chromatin and hnRNA interactions with the nuclear matrix. Cell. 1979 Dec;18(4):1079–1090. doi: 10.1016/0092-8674(79)90221-6. [DOI] [PubMed] [Google Scholar]
  28. Long B. H., Ochs R. L. Nuclear matrix, hnRNA, and snRNA in friend erythroleukemia nuclei depleted of chromatin by low ionic strength EDTA. Biol Cell. 1983;48(2-3):89–98. doi: 10.1111/j.1768-322x.1984.tb00204.x. [DOI] [PubMed] [Google Scholar]
  29. Madore S. J., Wieben E. D., Kunkel G. R., Pederson T. Precursors of U4 small nuclear RNA. J Cell Biol. 1984 Sep;99(3):1140–1144. doi: 10.1083/jcb.99.3.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maundrell K., Maxwell E. S., Puvion E., Scherrer K. The nuclear matrix of duck erythroblasts is associated with globin mRNA coding sequences but not with the major proteins of 40S nuclear RNP. Exp Cell Res. 1981 Dec;136(2):435–445. doi: 10.1016/0014-4827(81)90023-9. [DOI] [PubMed] [Google Scholar]
  31. Miller T. E., Huang C. Y., Pogo A. O. Rat liver nuclear skeleton and ribonucleoprotein complexes containing HnRNA. J Cell Biol. 1978 Mar;76(3):675–691. doi: 10.1083/jcb.76.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller T. E., Huang C. Y., Pogo A. O. Rat liver nuclear skeleton and small molecular weight RNA species. J Cell Biol. 1978 Mar;76(3):692–704. doi: 10.1083/jcb.76.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Müller M., Spiess E., Werner D. Fragmentation of 'nuclear matrix' on a mica target. Eur J Cell Biol. 1983 Jul;31(1):158–166. [PubMed] [Google Scholar]
  34. Nash R. E., Puvion E., Bernhard W. Perichromatin fibrils as components of rapidly labeled extranucleolar RNA. J Ultrastruct Res. 1975 Dec;53(3):395–405. doi: 10.1016/s0022-5320(75)80040-2. [DOI] [PubMed] [Google Scholar]
  35. Northemann W., Seifert H., Heinrich P. C. The effect of sodium chloride on the structure of ribonucleoprotein particles from rat liver nuclei. Hoppe Seylers Z Physiol Chem. 1979 Jul;360(7):877–888. doi: 10.1515/bchm2.1979.360.2.877. [DOI] [PubMed] [Google Scholar]
  36. Puvion E., Bernhard W. Ribonucleoprotein components in liver cell nuclei as visualized by cryoultramicrotomy. J Cell Biol. 1975 Oct;67(1):200–214. doi: 10.1083/jcb.67.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Puvion E., Lange M. Functional significance of perichromatin granule accumulation induced by cadmium chloride in isolated rat liver cells. Exp Cell Res. 1980 Jul;128(1):47–58. doi: 10.1016/0014-4827(80)90385-7. [DOI] [PubMed] [Google Scholar]
  38. Puvion E., Moyne G. Intranuclear migration of newly synthesized extranucleolar ribonucleoproteins. A high resolution quantitative autoradiographical and cytochemical study. Exp Cell Res. 1978 Aug;115(1):79–88. doi: 10.1016/0014-4827(78)90404-4. [DOI] [PubMed] [Google Scholar]
  39. Ross D. A., Yen R. W., Chae C. B. Association of globin ribonucleic acid and its precursors with the chicken erythroblast nuclear matrix. Biochemistry. 1982 Feb 16;21(4):764–771. doi: 10.1021/bi00533a029. [DOI] [PubMed] [Google Scholar]
  40. Scheer U., Lanfranchi G., Rose K. M., Franke W. W., Ringertz N. R. Migration of rat RNA polymerase I into chick erythrocyte nuclei undergoing reactivation in chick-rat heterokaryons. J Cell Biol. 1983 Nov;97(5 Pt 1):1641–1643. doi: 10.1083/jcb.97.5.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith H. C., Berezney R. DNA polymerase alpha is tightly bound to the nuclear matrix of actively replicating liver. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1541–1547. doi: 10.1016/s0006-291x(80)80041-6. [DOI] [PubMed] [Google Scholar]
  42. Spector D. L., Schrier W. H., Busch H. Immunoelectron microscopic localization of snRNPs. Biol Cell. 1983;49(1):1–10. doi: 10.1111/j.1768-322x.1984.tb00215.x. [DOI] [PubMed] [Google Scholar]
  43. Steele W. J., Busch H. Studies on the ribonucleic acid components of the nuclear ribonucleoprotein network. Biochim Biophys Acta. 1966 Oct 24;129(1):54–67. doi: 10.1016/0005-2787(66)90008-6. [DOI] [PubMed] [Google Scholar]
  44. Stévenin J., Jacob M. Effects of sodium chloride and pancreatic ribonuclease on the rat-brain nuclear particles: the fate of the protein moiety. Eur J Biochem. 1974 Aug 15;47(1):129–137. doi: 10.1111/j.1432-1033.1974.tb03676.x. [DOI] [PubMed] [Google Scholar]
  45. Vogelstein B., Hunt B. F. A subset of small nuclear ribonucleoprotein particle antigens is a component of the nuclear matrix. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1224–1232. doi: 10.1016/0006-291x(82)91099-3. [DOI] [PubMed] [Google Scholar]
  46. Woodcock C. L., LaFond R. E., Woodcock H., Baldwin L. A., Bhorjee J. S. Reactivation of avian erythrocyte nuclei in mammalian cytoplasts. A dominant role for pre-existing cytoplasmic components. Exp Cell Res. 1984 Sep;154(1):155–170. doi: 10.1016/0014-4827(84)90676-1. [DOI] [PubMed] [Google Scholar]
  47. Zeller R., Nyffenegger T., De Robertis E. M. Nucleocytoplasmic distribution of snRNPs and stockpiled snRNA-binding proteins during oogenesis and early development in Xenopus laevis. Cell. 1983 Feb;32(2):425–434. doi: 10.1016/0092-8674(83)90462-2. [DOI] [PubMed] [Google Scholar]
  48. van Eekelen C. A., van Venrooij W. J. hnRNA and its attachment to a nuclear protein matrix. J Cell Biol. 1981 Mar;88(3):554–563. doi: 10.1083/jcb.88.3.554. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES