Abstract
The retinal pigmented epithelium (RPE) is a simple cuboidal epithelium with apical processes which, unlike many epithelia, do not extend freely into a lumen but rather interdigitate closely with the outer segments of the neural retina. To determine whether this close association was reflected in the cytoskeletal organization of the RPE, we studied the components of the cytoskeleton of the RPE and their localization in the body of the cell and in the apical processes. By relative mobility on SDS gels and by immunoblotting, we identified actin, vimentin, myosin, spectrin (240/235), and alpha-actinin as major components, and vinculin as a minor component. In addition, the RPE cytoskeleton contains polypeptides of Mr 280,000 and 250,000; the latter co-electrophoreses with actin-binding protein. By immunofluorescence, the terminal web region appeared similar to the comparable region of the intestinal epithelium that consists of broad belts of microfilaments containing myosin, actin, spectrin, and alpha- actinin. However, the components of the apical processes were very different from those of intestinal microvilli. We observed staining along the process for myosin, actin, spectrin, alpha-actinin, and vinculin. The presence in the apical processes of contractile proteins and also of proteins typically found at sites of cell attachments suggests that the RPE may actively adhere to, and exert tension on, the neural retina.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S. Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and nonmuscle cells. Cell. 1982 Sep;30(2):349–350. doi: 10.1016/0092-8674(82)90232-x. [DOI] [PubMed] [Google Scholar]
- Bretscher A., Weber K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol. 1978 Dec;79(3):839–845. doi: 10.1083/jcb.79.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broschat K. O., Stidwill R. P., Burgess D. R. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell. 1983 Dec;35(2 Pt 1):561–571. doi: 10.1016/0092-8674(83)90190-3. [DOI] [PubMed] [Google Scholar]
- Burgess D. R. Reactivation of intestinal epithelial cell brush border motility: ATP-dependent contraction via a terminal web contractile ring. J Cell Biol. 1982 Dec;95(3):853–863. doi: 10.1083/jcb.95.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnside M. B. Possible roles of microtubules and actin filaments in retinal pigmented epithelium. Exp Eye Res. 1976 Aug;23(2):257–275. doi: 10.1016/0014-4835(76)90208-6. [DOI] [PubMed] [Google Scholar]
- COULOMBRE A. J. Correlations of structural and biochemical changes in the developing retina of the chick. Am J Anat. 1955 Jan;96(1):153–189. doi: 10.1002/aja.1000960106. [DOI] [PubMed] [Google Scholar]
- Chaitin M. H., Hall M. O. The distribution of actin in cultured normal and dystrophic rat pigment epithelial cells during the phagocytosis of rod outer segments. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):821–831. [PubMed] [Google Scholar]
- Crawford B. J. Development of the junctional complex during differentiation of chick pigmented epithelial cells in clonal culture. Invest Ophthalmol Vis Sci. 1980 Mar;19(3):223–237. [PubMed] [Google Scholar]
- Crawford B. Cloned pigmented retinal epiehtlium. The role of microfilaments in the differentiation of cell shape. J Cell Biol. 1979 May;81(2):301–315. doi: 10.1083/jcb.81.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dlugosz A. A., Antin P. B., Nachmias V. T., Holtzer H. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984 Dec;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drenckhahn D., Gröschel-Stewart U. Localization of myosin and actin in ocular nonmuscle cells. Immunofluorescence-microscopic, biochemical, and electron-microscopic studies. Cell Tissue Res. 1977 Jul 19;181(4):493–503. doi: 10.1007/BF00221771. [DOI] [PubMed] [Google Scholar]
- Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P. Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution. Cell. 1983 Sep;34(2):503–512. doi: 10.1016/0092-8674(83)90383-5. [DOI] [PubMed] [Google Scholar]
- Hirokawa N., Cheney R. E., Willard M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell. 1983 Mar;32(3):953–965. doi: 10.1016/0092-8674(83)90080-6. [DOI] [PubMed] [Google Scholar]
- Hirokawa N., Tilney L. G., Fujiwara K., Heuser J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol. 1982 Aug;94(2):425–443. doi: 10.1083/jcb.94.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaVail M. M. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976 Dec 3;194(4269):1071–1074. doi: 10.1126/science.982063. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Nelson W. J., Kasamatsu T. Segregation of two spectrin forms in the chicken optic system: a mechanism for establishing restricted membrane-cytoskeletal domains in neurons. Cell. 1984 Feb;36(2):269–278. doi: 10.1016/0092-8674(84)90220-4. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
- Mooseker M. S. Actin binding proteins of the brush border. Cell. 1983 Nov;35(1):11–13. doi: 10.1016/0092-8674(83)90202-7. [DOI] [PubMed] [Google Scholar]
- Owaribe K., Kodama R., Eguchi G. Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo. J Cell Biol. 1981 Aug;90(2):507–514. doi: 10.1083/jcb.90.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owaribe K., Masuda H. Isolation and characterization of circumferential microfilament bundles from retinal pigmented epithelial cells. J Cell Biol. 1982 Oct;95(1):310–315. doi: 10.1083/jcb.95.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi I. K., Takeuchi Y. K. Intermediate filaments in the retinal pigment epithelial cells of the goldfish. J Electron Microsc (Tokyo) 1979;28(2):134–137. [PubMed] [Google Scholar]
- Young R. W., Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol. 1969 Aug;42(2):392–403. doi: 10.1083/jcb.42.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
