Abstract
Liver cells isolated from newborn rats and seeded on a non-adherent plastic substratum were found to spontaneously re-aggregate and to form, within a few days, spheroidal aggregates that eventually reached a plateaued diameter of 150-175 micron. Analyses on frozen sections from these spheroids by immunofluorescence microscopy using antibodies to various cytoskeletal elements and extracellular matrix components revealed a sorting out and a histotypic reorganization of three major cell types. A first type consisted of cells that segregated out on the aggregate surface forming a monolayer cell lining; a second type was identified as hepatocytes that regrouped in small islands often defining a central lumen; and a third group of cells reorganized into bile duct-like structures. This intercellular organization in the aggregates was paralleled by the accumulation of extracellular matrix components (laminin, fibronectin, and collagen) and their deposition following a specific pattern around each cell population structure. Determinations of albumin secretion and tyrosine aminotransferase induction by dexamethasone and glucagon at various times after the initiation of the cultures revealed a maintenance of the hepatocyte- differentiated functions for at least up to 2 mo at the levels measured at 3-5 d. It is concluded that cells dispersed as single cells from newborn rat liver conserve in part the necessary information to reconstruct a proper three-dimensional cyto-architecture and that the microenvironment so generated most likely represents a basic requirement for the optimal functioning of these differentiated cells.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
- Bélanger L., Fleischer B., Fleischer S., Guillouzo A., Lemonnier M., Chiu J. F. Subcellular distribution and molecular heterogeneity of alpha 1-fetoprotein in newborn rat liver. Biochemistry. 1979 May 15;18(10):1962–1968. doi: 10.1021/bi00577a018. [DOI] [PubMed] [Google Scholar]
- Cassel D., Wood P. M., Bunge R. P., Glaser L. Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglion Schwann cells. J Cell Biochem. 1982;18(4):433–445. doi: 10.1002/jcb.1982.240180405. [DOI] [PubMed] [Google Scholar]
- Clement B., Guguen-Guillouzo C., Campion J. P., Glaise D., Bourel M., Guillouzo A. Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of albumin secretion and accumulation of extracellular material. Hepatology. 1984 May-Jun;4(3):373–380. doi: 10.1002/hep.1840040305. [DOI] [PubMed] [Google Scholar]
- DeLong G. R. Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Dev Biol. 1970 Aug;22(4):563–583. doi: 10.1016/0012-1606(70)90169-7. [DOI] [PubMed] [Google Scholar]
- Deschenes J., Valet J. P., Marceau N. Hepatocytes from newborn and weanling rats in monolayer culture: isolation by perfusion, fibronectin-mediated adhesion, spreading, and functional activities. In Vitro. 1980 Aug;16(8):722–730. doi: 10.1007/BF02619202. [DOI] [PubMed] [Google Scholar]
- Duband J. L., Thiery J. P. Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol. 1982 Oct;93(2):308–323. doi: 10.1016/0012-1606(82)90120-8. [DOI] [PubMed] [Google Scholar]
- Edelman G. M. Cell adhesion and morphogenesis: the regulator hypothesis. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1460–1464. doi: 10.1073/pnas.81.5.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
- Enat R., Jefferson D. M., Ruiz-Opazo N., Gatmaitan Z., Leinwand L. A., Reid L. M. Hepatocyte proliferation in vitro: its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1411–1415. doi: 10.1073/pnas.81.5.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folkman J., Greenspan H. P. Influence of geometry on control of cell growth. Biochim Biophys Acta. 1975 Dec 31;417(3-4):211–236. doi: 10.1016/0304-419x(75)90011-6. [DOI] [PubMed] [Google Scholar]
- Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
- Garrod D. R., Nicol A. Cell behaviour and molecular mechanisms of cell-cell adhesion. Biol Rev Camb Philos Soc. 1981 May;56(2):199–242. doi: 10.1111/j.1469-185x.1981.tb00348.x. [DOI] [PubMed] [Google Scholar]
- Germain L., Goyette R., Marceau N. Differential cytokeratin and alpha-fetoprotein expression in morphologically distinct epithelial cells emerging at the early stage of rat hepatocarcinogenesis. Cancer Res. 1985 Feb;45(2):673–681. [PubMed] [Google Scholar]
- Grover A., Andrews G., Adamson E. D. Role of laminin in epithelium formation by F9 aggregates. J Cell Biol. 1983 Jul;97(1):137–144. doi: 10.1083/jcb.97.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grover A., Oshima R. G., Adamson E. D. Epithelial layer formation in differentiating aggregates of F9 embryonal carcinoma cells. J Cell Biol. 1983 Jun;96(6):1690–1696. doi: 10.1083/jcb.96.6.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guguen-Guillouzo C., Clément B., Baffet G., Beaumont C., Morel-Chany E., Glaise D., Guillouzo A. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res. 1983 Jan;143(1):47–54. doi: 10.1016/0014-4827(83)90107-6. [DOI] [PubMed] [Google Scholar]
- Harrison F. L., Chesterton C. J. Factors mediating cell--cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett. 1980 Dec 29;122(2):157–165. doi: 10.1016/0014-5793(80)80428-5. [DOI] [PubMed] [Google Scholar]
- Humphries M. J., Ayad S. R. Stimulation of DNA synthesis by cathepsin D digests of fibronectin. 1983 Oct 27-Nov 2Nature. 305(5937):811–813. doi: 10.1038/305811a0. [DOI] [PubMed] [Google Scholar]
- Jirtle R. L., Biles C., Michalopoulos G. Morphologic and histochemical analysis of hepatocytes transplanted into syngeneic hosts. Am J Pathol. 1980 Oct;101(1):115–126. [PMC free article] [PubMed] [Google Scholar]
- Johansson S., Hök M. Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J Cell Biol. 1984 Mar;98(3):810–817. doi: 10.1083/jcb.98.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansson S., Kjellén L., Hök M., Timpl R. Substrate adhesion of rat hepatocytes: a comparison of laminin and fibronectin as attachment proteins. J Cell Biol. 1981 Jul;90(1):260–264. doi: 10.1083/jcb.90.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landry J., Freyer J. P. Regulatory mechanisms in spheroidal aggregates of normal and cancerous cells. Recent Results Cancer Res. 1984;95:50–66. doi: 10.1007/978-3-642-82340-4_3. [DOI] [PubMed] [Google Scholar]
- Lieberman M. A., Keller-McGandy C. E., Woolsey T. A., Glaser L. Binding of isolated 3T3 surface membranes to growing 3T3 cells and their effect on cell growth. J Cell Biochem. 1982;20(1):81–93. doi: 10.1002/jcb.240200109. [DOI] [PubMed] [Google Scholar]
- Lissitzky S., Fayet G., Giraud A., Verrier B., Torresani J. Thyrotrophin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells. 1. Mechanism of action of thyrotrophin and metabolic properties. Eur J Biochem. 1971 Dec 22;24(1):88–99. doi: 10.1111/j.1432-1033.1971.tb19658.x. [DOI] [PubMed] [Google Scholar]
- MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
- Marceau N., Baribault H., Leroux-Nicollet I. Dexamethasone can modulate the synthesis and organization of cytokeratins in cultured differentiating rat hepatocytes. Can J Biochem Cell Biol. 1985 Jun;63(6):448–457. doi: 10.1139/o85-064. [DOI] [PubMed] [Google Scholar]
- Marceau N., Goyette R., Guidoin R., Antakly T. Hormonally induced formation of extracellular biomatrix in cultured normal and neoplastic liver cells. Effect of dexamethasone. Scan Electron Microsc. 1982;(Pt 2):815–823. [PubMed] [Google Scholar]
- Marchase R. B., Vosbeck K., Roth S. Intercellular adhesive specificity. Biochim Biophys Acta. 1976 Dec 14;457(3-4):385–416. doi: 10.1016/0304-4157(76)90005-8. [DOI] [PubMed] [Google Scholar]
- Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Yoshimoto K., Nakayama Y., Tomita Y., Ichihara A. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell--cell contact and cell membranes. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7229–7233. doi: 10.1073/pnas.80.23.7229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitsch L., Tacchetti C., Tramontano D., Ambesi-Impiombato F. S. Suspension culture reveals a morphogenetic property of a thyroid epithelial cell line. Exp Cell Res. 1984 May;152(1):22–30. doi: 10.1016/0014-4827(84)90226-x. [DOI] [PubMed] [Google Scholar]
- Ono J., Takaki R., Okano H., Fukuma M. Long-term culture of pancreatic islet cells with special reference to the beta-cell function. In Vitro. 1979 Feb;15(2):95–102. doi: 10.1007/BF02618103. [DOI] [PubMed] [Google Scholar]
- Peterson S. W., Lerch V. Inhibition of DNA synthesis in SV3T3 cultures by isolated 3T3 plasma membranes. J Cell Biol. 1983 Jul;97(1):276–279. doi: 10.1083/jcb.97.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUBIN E. THE ORIGIN AND FATE OF PROLIFERATED BILE DUCTULAR CELLS. Exp Mol Pathol. 1964 Jun;86:279–286. doi: 10.1016/0014-4800(64)90059-0. [DOI] [PubMed] [Google Scholar]
- Rojkind M., Gatmaitan Z., Mackensen S., Giambrone M. A., Ponce P., Reid L. M. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980 Oct;87(1):255–263. doi: 10.1083/jcb.87.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin K., Hök M., Obrink B., Timpl R. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell. 1981 May;24(2):463–470. doi: 10.1016/0092-8674(81)90337-8. [DOI] [PubMed] [Google Scholar]
- STEINBERG M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963 Aug 2;141(3579):401–408. doi: 10.1126/science.141.3579.401. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res. 1973 Jan;76(1):25–30. doi: 10.1016/0014-4827(73)90414-x. [DOI] [PubMed] [Google Scholar]
- Sutherland R. M., Durand R. E. Radiation response of multicell spheroids--an in vitro tumour model. Curr Top Radiat Res Q. 1976 Jan;11(1):87–139. [PubMed] [Google Scholar]
- Thiery J. P., Duband J. L., Rutishauser U., Edelman G. M. Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6737–6741. doi: 10.1073/pnas.79.21.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbreit J., Roseman S. A requirement for reversible binding between aggregating embryonic cells before stable adhesion. J Biol Chem. 1975 Dec 25;250(24):9360–9368. [PubMed] [Google Scholar]
- Van der Schueren B., Denef C., Cassiman J. J. Ultrastructural and functional characteristics of rat pituitary cell aggregates. Endocrinology. 1982 Feb;110(2):513–523. doi: 10.1210/endo-110-2-513. [DOI] [PubMed] [Google Scholar]
- Zenzes M. T., Engel W. The capacity of ovarian cells of the postnatal rat to reorganize into histiotypic structures. Differentiation. 1981;19(3):199–202. doi: 10.1111/j.1432-0436.1981.tb01148.x. [DOI] [PubMed] [Google Scholar]
- Zenzes M. T., Engel W. The capacity of testicular cells of the postnatal rat to reorganize into histotypic structures. Differentiation. 1981;20(2):157–161. doi: 10.1111/j.1432-0436.1981.tb01170.x. [DOI] [PubMed] [Google Scholar]